468 research outputs found
Learning an atlas of a cognitive process in its functional geometry
Proceedings of the 22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011.In this paper we construct an atlas that captures functional characteristics of a cognitive process from a population of individuals. The functional connectivity is encoded in a low-dimensional embedding space derived from a diffusion process on a graph that represents correlations of fMRI time courses. The atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. The atlas is not directly coupled to the anatomical space, and can represent functional networks that are variable in their spatial distribution. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects.National Science Foundation (U.S.) (IIS/CRCNS 0904625)National Science Foundation (U.S.) (CAREER grant 0642971)National Institutes of Health (U.S.) (NCRR NAC P41- RR13218)National Institute of Biomedical Imaging and Bioengineering (U.S.) (U54-EB005149)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (P01CA067165)Seventh Framework Programme (European Commission) (n◦257528 (KHRESMOI)
Dalitz Plot Analysis of the Decay D^+ --> K^- pi^+ pi^+ and Indication of a Low-Mass Scalar K pi Resonance
We study the Dalitz plot of the decay D^+ --> K^- pi^+ pi^+ with a sample of
15090 events from Fermilab experiment E791. Modeling the decay amplitude as the
coherent sum of known K pi resonances and a uniform nonresonant term, we do not
obtain an acceptable fit. If we allow the mass and width of the K^*_0(1430) to
float, we obtain values consistent with those from PDG but the chi^2 per degree
of freedom of the fit is still unsatisfactory. A good fit is found when we
allow for the presence of an additional scalar resonance, with mass 797 +/- 19
+/- 43 MeV/c^2 and width 410 +/- 43 +/- 87 MeV/c^2. The mass and width of the
K^*_0(1430) become 1459 +/- 7 +/- 5 MeV/c^2 and 175 +/- 12 +/- 12 MeV/c^2,
respectively. Our results provide new information on the scalar sector in
hadron spectroscopy.Comment: Accepted for publication in Physical Review Letter
Search for the Flavor-Changing Neutral-Current Decays and
We report the results of a search for the flavor-changing neutral-current
decays and in
data from Fermilab charm hadroproduction experiment E791. No signal above
background is found, and we obtain upper limits on branching fractions,
and
, at the 90\% confidence
level.Comment: nine pages with figures; compressed, uuencoded postscrip
Study of the decay and measurement of masses and widths
From a sample of 848 44 decays, we find
. Using a Dalitz plot analysis of this
three body decay, we find significant contributions from the channels
, , , , and
. We present also the values obtained for masses and widths of
the resonances and .Comment: 10 pages, 3 eps figure
Experimental evidence for a light and broad scalar resonance in decay
From a sample of decay, we find
. Using a coherent amplitude analysis
to fit the Dalitz plot of this decays, we find strong evidence that a scalar
resonance of mass MeV/ and width MeV/ accounts for approximately half of all decays.Comment: 10 pages, 3 eps figure
Direct measurement of the pion valence quark momentum distribution, the pion light-cone wave function squared
We present the first direct measurements of the pion valence quark momentum
distribution which is related to the square of the pion light-cone wave
function. The measurements were carried out using data on diffractive
dissociation of 500 GeV/c into di-jets from a platinum target at
Fermilab experiment E791. The results show that the light-cone
asymptotic wave function, which was developed using perturbative QCD methods,
describes the data well for or more. We also
measured the transverse momentum distribution of the diffractive di-jets.Comment: 13 pages, 4 figure
Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays
Using the large hadroproduced charm sample collected in experiment E791 at
Fermilab, we have measured ratios of branching fractions for the two-body
singly-Cabibbo-suppressed charged decays of the D0:
(D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003,
(D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and
(D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for
differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and
pi+pi-, and have measured the CP asymmetry parameters
A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and
A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.
Asymmetries between the production of D+ and D- mesons from 500 GeV/c pi- nucleon interactions as a function of xF and pt**2
We present asymmetries between the production of D+ and D- mesons in Fermilab
experiment E791 as a function of xF and pt**2. The data used here consist of
74,000 fully-reconstructed charmed mesons produced by a 500 GeV/c pi- beam on C
and Pt foils. The measurements are compared to results of models which predict
differences between the production of heavy-quark mesons that have a light
quark in common with the beam (leading particles) and those that do not
(non-leading particles). While the default models do not agree with our data,
we can reach agreement with one of them, PYTHIA, by making a limited number of
changes to parameters used
Measurement of the form-factor ratios for D+ --> K* l nu
The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in
the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm
hadroproduction experiment E791 at Fermilab. From 3034 (595) signal
(background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09,
r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33
+-0.29. The values of the form factor ratios rv and r2 measured for the muon
channel are combined with the values of rv and r2 that we have measured in the
electron channel. The combined E791 results for the muon and electron channels
are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL
- …
