8 research outputs found

    Algebraic polynomials and moments of stochastic integrals

    Full text link
    We propose an algebraic method for proving estimates on moments of stochastic integrals. The method uses qualitative properties of roots of algebraic polynomials from certain general classes. As an application, we give a new proof of a variation of the Burkholder-Davis-Gundy inequality for the case of stochastic integrals with respect to real locally square integrable martingales. Further possible applications and extensions of the method are outlined.Comment: Published in Statistics and Probability Letters by the Elsevier. Permanent link: http://dx.doi.org/10.1016/j.spl.2011.01.022 Preliminary version of this paper appeared on October 27, 2009 as EURANDOM Report 2009-03

    Multiple testing, uncertainty and realistic pictures

    Get PDF
    We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on finite lattices.Comment: This paper initially appeared in January 2011 as EURANDOM Report 2011-004. Link to the abstract at EURANDOM Repository: http://www.eurandom.tue.nl/reports/2011/004-abstract.pdf Link to the paper at EURANDOM Repository: http://www.eurandom.tue.nl/reports/2011/004-report.pd

    Unsupervised robust nonparametric learning of hidden community properties

    Full text link
    We consider learning of fundamental properties of communities in large noisy networks, in the prototypical situation where the nodes or users are split into two classes according to a binary property, e.g., according to their opinions or preferences on a topic. For learning these properties, we propose a nonparametric, unsupervised, and scalable graph scan procedure that is, in addition, robust against a class of powerful adversaries. In our setup, one of the communities can fall under the influence of a knowledgeable adversarial leader, who knows the full network structure, has unlimited computational resources and can completely foresee our planned actions on the network. We prove strong consistency of our results in this setup with minimal assumptions. In particular, the learning procedure estimates the baseline activity of normal users asymptotically correctly with probability 1; the only assumption being the existence of a single implicit community of asymptotically negligible logarithmic size. We provide experiments on real and synthetic data to illustrate the performance of our method, including examples with adversaries.Comment: Experiments with new types of adversaries adde

    Fast and Accurate Uncertainty Estimation in Chemical Machine Learning

    No full text
    We present a scheme to obtain an inexpensive and reliable estimate of the uncertainty associated with the predictions of a machine-learning model of atomic and molecular properties. The scheme is based on resampling, with multiple models being generated based on subsampling of the same training data. The accuracy of the uncertainty prediction can be benchmarked by maximum likelihood estimation, which can also be used to correct for correlations between resampled models and to improve the performance of the uncertainty estimation by a cross-validation procedure. In the case of sparse Gaussian Process Regression models, this resampled estimator can be evaluated at negligible cost. We demonstrate the reliability of these estimates for the prediction of molecular and materials energetics and for the estimation of nuclear chemical shieldings in molecular crystals. Extension to estimate the uncertainty in energy differences, forces, or other correlated predictions is straightforward. This method can be easily applied to other machine-learning schemes and will be beneficial to make data-driven predictions more reliable and to facilitate training-set optimization and active-learning strategies
    corecore