263 research outputs found

    Direct evidence for stability of tetrahedral interstitial Er in Si up to 900^{\circ}C

    Get PDF
    Conversion electron emission channeling from the isotope 167m^{167m}Er (2.28 s), which is the decay product of radioactive 167^{167}Tm (9.25 d), offers a means of monitoring the lattice sites of Er in single crystals. We have used this method to determine the lattice location of 167m^{167m}Er in Si directly following room temperature implantation of 167^{167}Tm, after subsequent annealing steps, and also in situ during annealing up to 900°C. Following the recovery of implantation damage around 600°C, about 90% of Er occupies near-tetrahedral interstitial sites in both FZ and CZ Si. While in FZ Si 167m^{167m}Er was found to be stable on these sites even at 900°C, the tetrahedral Er fraction in CZ Si decreased considerably after annealing for 10 min at 800°C and above

    Fluctuation relations and rare realizations of transport observables

    Get PDF
    Fluctuation relations establish rigorous identities for the nonequilibrium averages of observables. Starting from a general transport master equation with time-dependent rates, we employ the stochastic path integral approach to study statistical fluctuations around such averages. We show how under nonequilibrium conditions, rare realizations of transport observables are crucial and imply massive fluctuations that may completely mask such identities. Quantitative estimates for these fluctuations are provided. We illustrate our results on the paradigmatic example of a mesoscopic RC circuit.Comment: 4 pages, 3 figures; v2: minor changes, published versio

    Relativistic diffusion processes and random walk models

    Get PDF
    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As well-known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (non-continuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the non-relativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.Comment: v3: final, shortened version to appear in Phys. Rev.

    A consistent derivation of the quark--antiquark and three quark potentials in a Wilson loop context

    Full text link
    In this paper we give a new derivation of the quark-antiquark potential in the Wilson loop context. This makes more explicit the approximations involved and enables an immediate extension to the three-quark case. In the qqq\overline{q} case we find the same semirelativistic potential obtained in preceding papers but for a question of ordering. In the 3q3q case we find a spin dependent potential identical to that already derived in the literature from the ad hoc and non correct assumption of scalar confinement. Furthermore we obtain the correct form of the spin independent potential up to the 1/m21/m^2 order.Comment: 30 pages, Revtex (3 figures available as hard copies only), IFUM 452/F

    Yang-Mills gauge anomalies in the presence of gravity with torsion

    Full text link
    The BRST transformations for the Yang-Mills gauge fields in the presence of gravity with torsion are discussed by using the so-called Maurer-Cartan horizontality conditions. With the help of an operator \d which allows to decompose the exterior spacetime derivative as a BRST commutator we solve the Wess-Zumino consistency condition corresponding to invariant Chern-Simons terms and gauge anomalies.Comment: 24 pages, report REF. TUW 94-1

    Bethe--Salpeter equation in QCD

    Get PDF
    We extend to regular QCD the derivation of a confining qqˉ q \bar{q} Bethe--Salpeter equation previously given for the simplest model of scalar QCD in which quarks are treated as spinless particles. We start from the same assumptions on the Wilson loop integral already adopted in the derivation of a semirelativistic heavy quark potential. We show that, by standard approximations, an effective meson squared mass operator can be obtained from our BS kernel and that, from this, by 1m2{1\over m^2} expansion the corresponding Wilson loop potential can be reobtained, spin--dependent and velocity--dependent terms included. We also show that, on the contrary, neglecting spin--dependent terms, relativistic flux tube model is reproduced.Comment: 23 pages, revte

    Semiclassical theory of spin-orbit interaction in the extended phase space

    Full text link
    We consider the semiclassical theory in a joint phase space of spin and orbital degrees of freedom. The method is developed from the path integrals using the spin-coherent-state representation, and yields the trace formula for the density of states. We discuss special cases, such as weak and strong spin-orbit coupling, and relate the present theory to the earlier approaches.Comment: 36 pages, 8 figures. Version 2: revised Sec. 4.4 and Appendix B; minor corrections elsewher

    Effect of withholding early parenteral nutrition in PICU on ketogenesis as potential mediator of its outcome benefit

    Get PDF
    Background: In critically ill children, omitting early use of parenteral nutrition (late-PN versus early-PN) reduced infections, accelerated weaning from mechanical ventilation, and shortened PICU stay. We hypothesized that fasting-induced ketogenesis mediates these benefits. Methods: In a secondary analysis of the PEPaNIC RCT (N = 1440), the impact of late-PN versus early-PN on plasma 3-hydroxybutyrate (3HB), and on blood glucose, plasma insulin, and glucagon as key ketogenesis regulators, was determined for 96 matched patients staying ≥ 5 days in PICU, and the day of maximal 3HB-effect, if any, was identified. Subsequently, in the total study population, plasma 3HB and late-PN-affected ketogenesis regulators were measured on that average day of maximal 3HB effect. Multivariable Cox proportional hazard and logistic regression analyses were performed adjusting for randomization and baseline risk factors. Whether any potential mediator role for 3HB was direct or indirect was assessed by further adjusting for ketogenesis regulators. Results: In the matched cohort (n = 96), late-PN versus early-PN increased plasma 3HB throughout PICU days 1–5 (P < 0.0001), maximally on PICU day 2. Also, blood glucose (P < 0.001) and plasma insulin (P < 0.0001), but not glucagon, were affected. In the total cohort (n = 1142 with available plasma), late-PN increased plasma 3HB on PICU day 2 (day 1 for shorter stayers) from (median [IQR]) 0.04 [0.04–0.04] mmol/L to 0.75 [0.04–2.03] mmol/L (P < 0.0001). The 3HB effect of late-PN sta
    corecore