1,272 research outputs found
General treatment of isocurvature perturbations and non-Gaussianities
We present a general formalism that provides a systematic computation of the
linear and non-linear perturbations for an arbitrary number of cosmological
fluids in the early Universe going through various transitions, in particular
the decay of some species (such as a curvaton or a modulus). Using this
formalism, we revisit the question of isocurvature non-Gaussianities in the
mixed inflaton-curvaton scenario and show that one can obtain significant
non-Gaussianities dominated by the isocurvature mode while satisfying the
present constraints on the isocurvature contribution in the observed power
spectrum. We also study two-curvaton scenarios, taking into account the
production of dark matter, and investigate in which cases significant
non-Gaussianities can be produced.Comment: Substantial improvements with respect to the first version. In
particular, we added a discussion on the confrontation of the models with
future observational data. This version is accepted for publication in JCA
A general proof of the equivalence between the \delta N and covariant formalisms
Recently, the equivalence between the \delta N and covariant formalisms has
been shown (Suyama et al. 2012), but they essentially assumed Einstein gravity
in their proof. They showed that the evolution equation of the curvature
covector in the covariant formalism on uniform energy density slicings
coincides with that of the curvature perturbation in the \delta N formalism
assuming the coincidence of uniform energy and uniform expansion (Hubble)
slicings, which is the case on superhorizon scales in Einstein gravity. In this
short note, we explicitly show the equivalence between the \delta N and
covariant formalisms without specifying the slicing condition and the
associated slicing coincidence, in other words, regardless of the gravity
theory.Comment: 7 pages,a reference added, to be published in EP
Isocurvature perturbations in extra radiation
Recent cosmological observations, including measurements of the CMB
anisotropy and the primordial helium abundance, indicate the existence of an
extra radiation component in the Universe beyond the standard three neutrino
species. In this paper we explore the possibility that the extra radiation has
isocurvatrue fluctuations. A general formalism to evaluate isocurvature
perturbations in the extra radiation is provided in the mixed inflaton-curvaton
system, where the extra radiation is produced by the decay of both scalar
fields. We also derive constraints on the abundance of the extra radiation and
the amount of its isocurvature perturbation. Current observational data favors
the existence of an extra radiation component, but does not indicate its having
isocurvature perturbation. These constraints are applied to some particle
physics motivated models. If future observations detect isocurvature
perturbations in the extra radiation, it will give us a hint to the origin of
the extra radiation.Comment: 41 pages, 8 figures; version accepted for publication in JCA
Combined local and equilateral non-Gaussianities from multifield DBI inflation
We study multifield aspects of Dirac-Born-Infeld (DBI) inflation. More
specifically, we consider an inflationary phase driven by the radial motion of
a D-brane in a conical throat and determine how the D-brane fluctuations in the
angular directions can be converted into curvature perturbations when the
tachyonic instability arises at the end of inflation. The simultaneous presence
of multiple fields and non-standard kinetic terms gives both local and
equilateral shapes for non-Gaussianities in the bispectrum. We also study the
trispectrum, pointing out that it acquires a particular momentum dependent
component whose amplitude is given by . We show that
this relation is valid in every multifield DBI model, in particular for any
brane trajectory, and thus constitutes an interesting observational signature
of such scenarios.Comment: 38 pages, 11 figures. Typos corrected; references added. This version
matches the one in press by JCA
The analysis of facial beauty: an emerging area of research in pattern analysis
Much research presented recently supports the idea that the human perception of attractiveness is data-driven and largely irrespective of the perceiver. This suggests using pattern analysis techniques for beauty analysis. Several scientific papers on this subject are appearing in image processing, computer vision and pattern analysis contexts, or use techniques of these areas. In this paper, we will survey the recent studies on automatic analysis of facial beauty, and discuss research lines and practical application
Consistency equations in Randall-Sundrum cosmology: a test for braneworld inflation
In the context of an inflationary Randall-Sundrum Type II braneworld (RS2) we
calculate spectral indices and amplitudes of cosmological scalar and tensor
perturbations, up to second order in slow-roll parameters. Under very simple
assumptions, extrapolating next-order formulae from first-order calculations in
the case of a de Sitter brane, we see that the degeneracy between standard and
braneworld lowest-order consistency equations is broken, thus giving different
signatures of early-universe inflationary expansion. Using the latest results
from WMAP for estimates of cosmological observables, it is shown that future
data and missions can in principle discriminate between standard and braneworld
scenarios.Comment: 13 pages; v3: supersedes the published version, corrected misprint
Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model
We investigate the primordial trispectra of the general multifield DBI
inflationary model. In contrast with the single field model, the entropic modes
can source the curvature perturbations on the super horizon scales, so we
calculate the contributions from the interaction of four entropic modes
mediating one adiabatic mode to the trispectra, at the large transfer limit
(). We obtained the general form of the 4-point correlation
functions, plotted the shape diagrams in two specific momenta configurations,
"equilateral configuration" and "specialized configuration". Our figures showed
that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA
Volume stabilization in a warped flux compactification model
We investigate the stability of the extra dimensions in a warped, codimension
two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a
non-vanishing scalar field potential. The braneworld solution has two 3-branes,
which are located at the positions of the conical singularities. For this type
of brane solution the relative positions of the branes (the shape modulus) is
determined via the tension-deficit relations, if the brane tensions are fixed.
However, the volume of the extra dimensions (the volume modulus) is not fixed
in the context of the classical theory, implying we should take quantum
corrections into account. Hence, we discuss the one-loop effective potential of
the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte
Local non-Gaussianity from inflation
The non-Gaussian distribution of primordial perturbations has the potential
to reveal the physical processes at work in the very early Universe. Local
models provide a well-defined class of non-Gaussian distributions that arise
naturally from the non-linear evolution of density perturbations on
super-Hubble scales starting from Gaussian field fluctuations during inflation.
I describe the delta-N formalism used to calculate the primordial density
perturbation on large scales and then review several models for the origin of
local primordial non-Gaussianity, including the cuvaton, modulated reheating
and ekpyrotic scenarios. I include an appendix with a table of sign conventions
used in specific papers.Comment: 21 pages, 1 figure, invited review to appear in Classical and Quantum
Gravity special issue on non-linear and non-Gaussian cosmological
perturbation
Cosmological constraints from Gauss-Bonnet braneworld with large-field potentials
We calculate the spectral index and tensor-to-scalar ratio for patch
inflation defined by and ,
using the slow-roll expansion. The patch cosmology arisen from the Gauss-Bonnet
braneworld consists of Gauss-Bonnet (GB), Randall-Sundrum (RS), and 4D general
relativistic (GR) cosmological models. In this work, we choose large-field
potentials of to compare with the observational data. Since
second-order corrections are rather small in the slow-roll limit, the
leading-order calculation is sufficient to compare with the data. Finally, we
show that it is easier to discriminate between quadratic potential and quartic
potential in the GB cosmological model rather than the GR or RS cosmological
models.Comment: 13 pages, title changed, version to appear in JCA
- …