312 research outputs found

    A crossing probability for critical percolation in two dimensions

    Get PDF
    Langlands et al. considered two crossing probabilities, pi_h and pi_{hv}, in their extensive numerical investigations of critical percolation in two dimensions. Cardy was able to find the exact form of pi_h by treating it as a correlation function of boundary operators in the Q goes to 1 limit of the Q state Potts model. We extend his results to find an analogous formula for pi_{hv} which compares very well with the numerical results.Comment: 8 pages, Latex2e, 1 figure, uuencoded compressed tar file, (1 typo changed

    The Tails of the Crossing Probability

    Full text link
    The scaling of the tails of the probability of a system to percolate only in the horizontal direction πhs\pi_{hs} was investigated numerically for correlated site-bond percolation model for q=1,2,3,4q=1,2,3,4.We have to demonstrate that the tails of the crossing probability far from the critical point have shape πhs(p)Dexp(cL[ppc]ν)\pi_{hs}(p) \simeq D \exp(c L[p-p_{c}]^{\nu}) where ν\nu is the correlation length index, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed. At criticality we observe crossover to another scaling πhs(p)Aexp(bL[ppc]νz)\pi_{hs}(p) \simeq A \exp (-b {L [p-p_{c}]^{\nu}}^{z}). Here zz is a scaling index describing the central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical change

    Deformed strings in the Heisenberg model

    Full text link
    We investigate solutions to the Bethe equations for the isotropic S = 1/2 Heisenberg chain involving complex, string-like rapidity configurations of arbitrary length. Going beyond the traditional string hypothesis of undeformed strings, we describe a general procedure to construct eigenstates including strings with generic deformations, discuss general features of these solutions, and provide a number of explicit examples including complete solutions for all wavefunctions of short chains. We finally investigate some singular cases and show from simple symmetry arguments that their contribution to zero-temperature correlation functions vanishes.Comment: 34 pages, 13 figure

    Universality of the Crossing Probability for the Potts Model for q=1,2,3,4

    Full text link
    The universality of the crossing probability πhs\pi_{hs} of a system to percolate only in the horizontal direction, was investigated numerically by using a cluster Monte-Carlo algorithm for the qq-state Potts model for q=2,3,4q=2,3,4 and for percolation q=1q=1. We check the percolation through Fortuin-Kasteleyn clusters near the critical point on the square lattice by using representation of the Potts model as the correlated site-bond percolation model. It was shown that probability of a system to percolate only in the horizontal direction πhs\pi_{hs} has universal form πhs=A(q)Q(z)\pi_{hs}=A(q) Q(z) for q=1,2,3,4q=1,2,3,4 as a function of the scaling variable z=[b(q)L1ν(q)(ppc(q,L))]ζ(q)z= [ b(q)L^{\frac{1}{\nu(q)}}(p-p_{c}(q,L)) ]^{\zeta(q)}. Here, p=1exp(β)p=1-\exp(-\beta) is the probability of a bond to be closed, A(q)A(q) is the nonuniversal crossing amplitude, b(q)b(q) is the nonuniversal metric factor, ζ(q)\zeta(q) is the nonuniversal scaling index, ν(q)\nu(q) is the correlation length index. The universal function Q(x)exp(z)Q(x) \simeq \exp(-z). Nonuniversal scaling factors were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed, journal-ref added

    Conformal loop ensembles and the stress-energy tensor

    Full text link
    We give a construction of the stress-energy tensor of conformal field theory (CFT) as a local "object" in conformal loop ensembles CLE_\kappa, for all values of \kappa in the dilute regime 8/3 < \kappa <= 4 (corresponding to the central charges 0 < c <= 1, and including all CFT minimal models). We provide a quick introduction to CLE, a mathematical theory for random loops in simply connected domains with properties of conformal invariance, developed by Sheffield and Werner (2006). We consider its extension to more general regions of definition, and make various hypotheses that are needed for our construction and expected to hold for CLE in the dilute regime. Using this, we identify the stress-energy tensor in the context of CLE. This is done by deriving its associated conformal Ward identities for single insertions in CLE probability functions, along with the appropriate boundary conditions on simply connected domains; its properties under conformal maps, involving the Schwarzian derivative; and its one-point average in terms of the "relative partition function." Part of the construction is in the same spirit as, but widely generalizes, that found in the context of SLE_{8/3} by the author, Riva and Cardy (2006), which only dealt with the case of zero central charge in simply connected hyperbolic regions. We do not use the explicit construction of the CLE probability measure, but only its defining and expected general properties.Comment: 49 pages, 3 figures. This is a concatenated, reduced and simplified version of arXiv:0903.0372 and (especially) arXiv:0908.151

    Dirac cohomology, elliptic representations and endoscopy

    Full text link
    The first part (Sections 1-6) of this paper is a survey of some of the recent developments in the theory of Dirac cohomology, especially the relationship of Dirac cohomology with (g,K)-cohomology and nilpotent Lie algebra cohomology; the second part (Sections 7-12) is devoted to understanding the unitary elliptic representations and endoscopic transfer by using the techniques in Dirac cohomology. A few problems and conjectures are proposed for further investigations.Comment: This paper will appear in `Representations of Reductive Groups, in Honor of 60th Birthday of David Vogan', edited by M. Nervins and P. Trapa, published by Springe

    Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation

    Get PDF
    We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Levy alpha-stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler function is the natural survival probability leading to time-fractional diffusion equations. Transformation methods for Mittag-Leffler random variables were found later than the well-known transformation method by Chambers, Mallows, and Stuck for Levy alpha-stable random variables and so far have not received as much attention; nor have they been used together with the latter in spite of their mathematical relationship due to the geometric stability of the Mittag-Leffler distribution. Combining the two methods, we obtain an accurate approximation of space- and time-fractional diffusion processes almost as easy and fast to compute as for standard diffusion processes.Comment: 7 pages, 5 figures, 1 table. Presented at the Conference on Computing in Economics and Finance in Montreal, 14-16 June 2007; at the conference "Modelling anomalous diffusion and relaxation" in Jerusalem, 23-28 March 2008; et

    Invariant Differential Operators and Characters of the AdS_4 Algebra

    Full text link
    The aim of this paper is to apply systematically to AdS_4 some modern tools in the representation theory of Lie algebras which are easily generalised to the supersymmetric and quantum group settings and necessary for applications to string theory and integrable models. Here we introduce the necessary representations of the AdS_4 algebra and group. We give explicitly all singular (null) vectors of the reducible AdS_4 Verma modules. These are used to obtain the AdS_4 invariant differential operators. Using this we display a new structure - a diagram involving four partially equivalent reducible representations one of which contains all finite-dimensional irreps of the AdS_4 algebra. We study in more detail the cases involving UIRs, in particular, the Di and the Rac singletons, and the massless UIRs. In the massless case we discover the structure of sets of 2s_0-1 conserved currents for each spin s_0 UIR, s_0=1,3/2,... All massless cases are contained in a one-parameter subfamily of the quartet diagrams mentioned above, the parameter being the spin s_0. Further we give the classification of the so(5,C) irreps presented in a diagramatic way which makes easy the derivation of all character formulae. The paper concludes with a speculation on the possible applications of the character formulae to integrable models.Comment: 30 pages, 4 figures, TEX-harvmac with input files: amssym.def, amssym.tex, epsf.tex; version 2 1 reference added; v3: minor corrections; v.4: minor corrections, v.5: minor corrections to conform with version in J. Phys. A: Math. Gen; v.6.: small correction and addition in subsections 4.1 & 4.

    Percolation and Conduction in Restricted Geometries

    Full text link
    The finite-size scaling behaviour for percolation and conduction is studied in two-dimensional triangular-shaped random resistor networks at the percolation threshold. The numerical simulations are performed using an efficient star-triangle algorithm. The percolation exponents, linked to the critical behaviour at corners, are in good agreement with the conformal results. The conductivity exponent, t', is found to be independent of the shape of the system. Its value is very close to recent estimates for the surface and bulk conductivity exponents.Comment: 10 pages, 7 figures, TeX, IOP macros include

    Universality of finite-size corrections to the number of critical percolation clusters

    Full text link
    Monte-Carlo simulations on a variety of 2d percolating systems at criticality suggest that the excess number of clusters in finite systems over the bulk value of nc is a universal quantity, dependent upon the system shape but independent of the lattice and percolation type. Values of nc are found to high accuracy, and for bond percolation confirm the theoretical predictions of Temperley and Lieb, and Baxter, Temperley, and Ashley, which we have evaluated explicitly in terms of simple algebraic numbers. Predictions for the fluctuations are also verified for the first time.Comment: 13 pages, 2 figs., Latex, submitted to Phys. Rev. Let
    corecore