548 research outputs found

    The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    Get PDF
    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2

    On the electron affinities of the Ca, Sc, Ti and Y atoms

    Get PDF
    For the Ca, Sc, Ti and Y atoms calculations are performed for the ground states of the neutrals and the ground and several low-lying excited states of the negative ions. Overall the computed electron affinities are in good accord with experiment. The calculations show the rapid stabilization of the 3d orbital relative to the 4p as the nuclear charge increases. The 3F(0) and 3D(0) terms are found to be close in energy in Sc(-) and in Y(-). This confirms earlier speculation that some of the peaks in the photodetachment spectra of Y(-) originate from the bound excited 3F(0) term of Y(-)

    Theoretical study of the C-H bond dissociation energy of acetylene

    Get PDF
    The authors present a theoretical study of the convergence of the C-H bond dissociation energy (D sub o) of acetylene with respect to both the one- and n-particle spaces. Their best estimate for D sub o of 130.1 plus or minus 1.0 kcal/mole is slightly below previous theoretical estimates, but substantially above the value determined using Stark anticrossing spectroscopy that is asserted to be an upper bound

    Theoretical studies of photoexcitation and ionization in H_2O

    Get PDF
    Theoretical studies are reported of the complete dipole excitation and ionization spectrum in H_2O employing Franck–Condon and static‐exchange approximations. Large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground‐state equilibrium geometry, and previously devised moment‐theory techniques are employed in constructing the continuum oscillator‐strength densities from the calculated spectra. Detailed comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact–excitation cross sections, and dipole (e, 2e)/(e, e+ion) and synchrotron‐radiation studies of partial‐channel photoionization cross sections. The various calculated excitation series in the outer‐valence (1b(^−1)_1, 3a(^−1)_1, 1b(^−1)_2) region are found to include contributions from valence‐like 2b_2 (σ*) and 4a_1(γ*) virtual orbitals, as well as appropriate nsa_1, npa_1, nda_1, npb_1, npb_2, ndb_1, ndb_2, and nda_2 Rydberg states. Transition energies and intensities in the ∼7 to 19 eV interval obtained from the present studies are seen to be in excellent agreement with the measured photoabsorption cross section, and to provide a basis for detailed spectral assignments. The calculated (1b(^−1)_1)X(^ 2)B_1, (3a_1(^−1))^2A_1, and (1b_2(^−1))(^2)B_2 partial‐channel cross sections are found to be largely atomic‐like and dominated by 2p→kd components, although the 2b_2(σ*) orbital gives rise to resonance‐like contributions just above threshold in the 3a_1→kb_2 and 1b_2→kb_2 channels. It is suggested that the latter transition couples with the underlying 1b_1→kb_1 channel, accounting for a prominent feature in the recent high‐resolution synchrotron‐radiation measurements. When this feature is taken into account, the calculations of the three outer‐valence channels are in excellent accord with recent synchrotron‐radiation and dipole (e, 2e) photoionization cross‐sectional measurements. The calculated inner‐valence (2a_1(^−1)) cross section is also in excellent agreement with corresponding measured values, although proper account must be taken of the appropriate final‐state configuration‐mixing effects that give rise to a modest failure of the Koopmans approximation, and to the observed broad PES band, in this case. Finally, the origins of the various spectral features present in the measured 1a_1 oxygen K‐edge electron energy‐loss profile in H_2O are seen to be clarified fully by the present calculations

    Core-core and core-valence correlation

    Get PDF
    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier

    Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    Get PDF
    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft

    On the electron affinity of the oxygen atom

    Get PDF
    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated

    Workshop Report on Space Weather Risks and Society

    Get PDF
    As technological innovations produce new capabilities, complexities, and interdependencies, our susceptibility to the societal impacts of space weather increase. There is real concern in the scientific community that our infrastructure would be at significant risk if a major geomagnetic storm should occur. To discuss the societal impacts of space weather, we brought together an interdisciplinary group of subject matter experts and societal stakeholders to participate in a workshop entitled Space Weather Risks and Society. The workshop was held at Ames Research Center (ARC) on 15-16 October 2011. The workshop was co-sponsored by NASA Ames Research Center (ARC), the Lockheed Martin Advanced Technology Center (LMATC), the Space Weather Prediction Center (SWPC, part of the National Oceanic and Atmospheric Administration NOAA), and the Rutherford Appleton Laboratory (RAL, part of the UK Science and Technology Facilities Council STFC). The workshop is part of a series of informal weekend workshops hosted by Center Director Pete Worden
    corecore