2,368 research outputs found

    Theoretical studies of photoexcitation and ionization in H_2O

    Get PDF
    Theoretical studies are reported of the complete dipole excitation and ionization spectrum in H_2O employing Franck–Condon and static‐exchange approximations. Large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground‐state equilibrium geometry, and previously devised moment‐theory techniques are employed in constructing the continuum oscillator‐strength densities from the calculated spectra. Detailed comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact–excitation cross sections, and dipole (e, 2e)/(e, e+ion) and synchrotron‐radiation studies of partial‐channel photoionization cross sections. The various calculated excitation series in the outer‐valence (1b(^−1)_1, 3a(^−1)_1, 1b(^−1)_2) region are found to include contributions from valence‐like 2b_2 (σ*) and 4a_1(Îł*) virtual orbitals, as well as appropriate nsa_1, npa_1, nda_1, npb_1, npb_2, ndb_1, ndb_2, and nda_2 Rydberg states. Transition energies and intensities in the ∌7 to 19 eV interval obtained from the present studies are seen to be in excellent agreement with the measured photoabsorption cross section, and to provide a basis for detailed spectral assignments. The calculated (1b(^−1)_1)X(^ 2)B_1, (3a_1(^−1))^2A_1, and (1b_2(^−1))(^2)B_2 partial‐channel cross sections are found to be largely atomic‐like and dominated by 2p→kd components, although the 2b_2(σ*) orbital gives rise to resonance‐like contributions just above threshold in the 3a_1→kb_2 and 1b_2→kb_2 channels. It is suggested that the latter transition couples with the underlying 1b_1→kb_1 channel, accounting for a prominent feature in the recent high‐resolution synchrotron‐radiation measurements. When this feature is taken into account, the calculations of the three outer‐valence channels are in excellent accord with recent synchrotron‐radiation and dipole (e, 2e) photoionization cross‐sectional measurements. The calculated inner‐valence (2a_1(^−1)) cross section is also in excellent agreement with corresponding measured values, although proper account must be taken of the appropriate final‐state configuration‐mixing effects that give rise to a modest failure of the Koopmans approximation, and to the observed broad PES band, in this case. Finally, the origins of the various spectral features present in the measured 1a_1 oxygen K‐edge electron energy‐loss profile in H_2O are seen to be clarified fully by the present calculations

    Weiterwirken und AktualitÀt Zwinglis in den Kirchen der Deutschen Demokratischen Republik

    Get PDF

    Wolf, Witch, Traveler

    Get PDF

    Theoretical dissociation energies for ionic molecules

    Get PDF
    Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides

    The computation of C-C and N-N bond dissociation energies for singly, doubly, and triply bonded systems

    Get PDF
    The bond dissociation energies (D sub e) of C2H2, C2H4, C2H6, N2, N2H2, and N2H4 are studied at various levels of correlation treatment. The convergence of D sub e with respect to the one particle basis is studied at the single reference modified coupled-pair functional (MCPF) level. At all levels of correlation treatment, the errors in the bond dissociation energies increase with the degree of multiple bond character. The multireference configuration interaction (MRCI) D sub e values, corrected for an estimate of higher excitations, are in excellent agreement with those determined using the size extensive averaged coupled pair functional (ACPF) method. It was found that the full valence complete active space self consistent field (CASSCF)/MRCI calculations are reproduced very well by MRCI calculations based on a CASSCF calculation that includes in the active space only those electrons involved in the C-C or N-N bonds. To achieve chemical accuracy (1 kcal/mole) for the D sub e values of the doubly bonded species C2H4 and N2H2 requires one particle basis sets including up through h angular momentum functions (l = 5) and a multireference treatment of electron correlation: still higher levels of calculation are required to achieve chemical accuracy for the triply bonded species C2H2 and N2

    On the electron affinities of the Ca, Sc, Ti and Y atoms

    Get PDF
    For the Ca, Sc, Ti and Y atoms calculations are performed for the ground states of the neutrals and the ground and several low-lying excited states of the negative ions. Overall the computed electron affinities are in good accord with experiment. The calculations show the rapid stabilization of the 3d orbital relative to the 4p as the nuclear charge increases. The 3F(0) and 3D(0) terms are found to be close in energy in Sc(-) and in Y(-). This confirms earlier speculation that some of the peaks in the photodetachment spectra of Y(-) originate from the bound excited 3F(0) term of Y(-)

    The 2D Rydberg series in Al I

    Get PDF
    High quality ab initio electonic structure calculations were performed on the 2D Rydberg series in Al I. The configuration 3s3p2(2D) is shown to contribute substantially to the lowest four 2D Rydberg states. The same configuration also contributes substantially to a 2D state embedded in the ionization continuum. Computed oscillator strengths for the first six members of the 2D Rydberg transitions are given: these should be of substantially high accuracy than currently available values
    • 

    corecore