4,964 research outputs found

    Building Digital Identities: The Challenges, Risks and Opportunities of Collecting Behavioural Attributes for new Digital Identity Systems.

    Get PDF
    The provision of legal identity for all is increasingly viewed as a key mechanism for driving development goals. Behavioural attributes produced through digital interactions may have significant potential for enabling access to a legal identity for all, however the social, legal, and technical affordances and implications remain under-explored.University of Exeter and CoelitionEconomic and Social Research Council (ESRC

    Quantum process tomography of a controlled-NOT gate

    Get PDF
    We demonstrate complete characterization of a two-qubit entangling process - a linear optics controlled-NOT gate operating with coincident detection - by quantum process tomography. We use maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows accurate prediction of the operation of the gate for arbitrary input states, and calculation of gate performance measures such as the average gate fidelity, average purity and entangling capability of our gate, which are 0.90, 0.83 and 0.73, respectively.Comment: 4 pages, 2 figures. v2 contains new data corresponding to improved gate operation. Figure quality slightly reduced for arXi

    Volume-preserving normal forms of Hopf-zero singularity

    Full text link
    A practical method is described for computing the unique generator of the algebra of first integrals associated with a large class of Hopf-zero singularity. The set of all volume-preserving classical normal forms of this singularity is introduced via a Lie algebra description. This is a maximal vector space of classical normal forms with first integral; this is whence our approach works. Systems with a non-zero condition on their quadratic parts are considered. The algebra of all first integrals for any such system has a unique (modulo scalar multiplication) generator. The infinite level volume-preserving parametric normal forms of any non-degenerate perturbation within the Lie algebra of any such system is computed, where it can have rich dynamics. The associated unique generator of the algebra of first integrals are derived. The symmetry group of the infinite level normal forms are also discussed. Some necessary formulas are derived and applied to appropriately modified R\"{o}ssler and generalized Kuramoto--Sivashinsky equations to demonstrate the applicability of our theoretical results. An approach (introduced by Iooss and Lombardi) is applied to find an optimal truncation for the first level normal forms of these examples with exponentially small remainders. The numerically suggested radius of convergence (for the first integral) associated with a hypernormalization step is discussed for the truncated first level normal forms of the examples. This is achieved by an efficient implementation of the results using Maple

    The Columbia River Dispute

    Get PDF

    From antiferromagnetism to superconductivity in Fe 1+y(Te1-x,Sex) (0 < x < 0.20): a neutron powder diffraction analysis

    Full text link
    The nuclear and magnetic structure of Fe1+y(Te1-x,Sex) (0 < x < 0.20) compounds was analyzed between 2 K and 300 K by means of Rietveld refinement of neutron powder diffraction data. Samples with x < 0.075 undergo a tetragonal to monoclinic phase transition at low temperature, whose critical temperature decreases with increasing Se content; this structural transition is strictly coupled to a long range antiferromagnetic ordering at the Fe site. Both the transition to a monoclinic phase and the long range antiferromagnetism are suppressed for 0.10 < x < 0.20. The onset of the structural and of the magnetic transition remains coincident with the increase of Se substitution. The low temperature monoclinic crystal structure has been revised. Superconductivity arises for x > 0.05, therefore a significant region where superconductivity and long range antiferromagnetism coexist is present in the pseudo-binary FeTe - FeSe phase diagram.Comment: 33 pages, 4 tables, 13 figure

    Microstructural evolution throughout the structural transition in 1111 oxy-pnictides

    Full text link
    The microstructural evolution throughout the first order tetragonal to orthorhombic structural transition is analyzed by powder diffraction analysis for two different systems belonging to the class of compounds referred to as 1111 oxy-pnictides: (La1-yYy)FeAsO and SmFeAs(O1-xFx). Both systems are characterized by a similar behaviour: on cooling microstrain along the tetragonal hh0 direction takes place and increases as the temperature is decreased. Just above the structural transition microstrain reaches its maximum value and then is abruptly suppressed by symmetry breaking. No volume discontinuity throughout the first order transition is observed and a groupsubgroup relationship holds between the tetragonal and the orthorhombic structures, thus suggesting that orbital ordering drives symmetry breaking. Microstrain reflects a distribution of lattice parameters in the tetragonal phase and explains the occurrence of anisotropic properties commonly attributed to nematic correlations; in this scenario the nematic behaviour is induced by the tendency towards ordering of Fe orbitals

    Linear Optical CNOT Gate in the Coincidence Basis

    Get PDF
    We describe the operation and tolerances of a non-deterministic, coincidence basis, quantum CNOT gate for photonic qubits. It is constructed solely from linear optical elements and requires only a two-photon source for its demonstration.Comment: Submitted to Physical Review
    corecore