7 research outputs found

    Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery

    Get PDF
    Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood–brain and blood–spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments

    Combined Confocal Microscope and Brandaris 128 Ultra-High-Speed Camera

    Get PDF
    Controlling microbubble-mediated drug delivery requires the underlying biological and physical mechanisms to be unraveled. To image both microbubble oscillation upon ultrasound insonification and the resulting cellular response, we developed an optical imaging system that can achieve the necessary nanosecond temporal and nanometer spatial resolutions. We coupled the Brandaris 128 ultra-high-speed camera (up to 25 million frames per second) to a custom-built Nikon A1R+ confocal microscope. The unique capabilities of this combined system are demonstrated with three experiments showing microbubble oscillation leading to either endothelial drug delivery, bacterial biofilm disruption, or structural changes in the microbubble coating. In conclusion, using this state-of-the-art optical imaging system, microbubble-mediated drug delivery can be studied with high temporal resolution to resolve microbubble oscillation and high spatial resolution and detector sensitivity to discern cellular response. Combining these two imaging technologies will substantially advance our knowledge on microbubble behavior and its role in drug delivery

    Phospholipid-coated targeted microbubbles for ultrasound molecular imaging and therapy

    No full text
    Phospholipid-coated microbubbles are ultrasound contrast agents that, when functionalized, adhere to specific biomarkers on cells. In this concise review, we highlight recent developments in strategies for targeting the microbubbles and their use for ultrasound molecular imaging (UMI) and therapy. Recently developed novel targeting strategies include magnetic functionalization, triple targeting, and the use of several new ligands. UMI is a powerful technique for studying disease progression, diagnostic imaging, and monitoring of therapeutic responses. Targeted microbubbles (tMBs) have been used for the treatment of cardiovascular diseases and cancer, with therapeutics either coadministered or loaded onto the tMBs. Regardless of which disease was treated, the use of tMBs always resulted in a better therapeutic outcome than non-tMBs when compared in vitro or in vivo.</p

    Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers

    Get PDF
    Phospholipid-coated targeted microbubbles are ultrasound contrast agents that can be used for molecular imaging and enhanced drug delivery. However, a better understanding is needed of their targeting capabilities and how they relate to microstructures in the microbubble coating. Here, we investigated the ligand distribution, lipid phase behavior, and their correlation in targeted microbubbles of clinically relevant sizes, coated with a ternary mixture of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3- phosphocholine (DSPC), with PEG40-stearate and DSPE-PEG2000. To investigate the effect of lipid handling prior to microbubble production in DSPC-based microbubbles, the components were either dispersed in aqueous medium (direct method) or first dissolved and mixed in an organic solvent (indirect method). To determine the lipid-phase behavior of all components, experiments were conducted on monolayers at the air/water interface. In comparison to pure DSPC and DPPC, the ternary mixtures had an additional transition plateau around 10−12 mN/m. As confirmed by infrared reflection absorption spectroscopy (IRRAS), this plateau was due to a transition in the conformation of the PEGylated components (mushroom to brush). While the condensed phase domains had a different morphology in the ternary DPPC and DSPC monolayers on the Langmuir trough, the domain morphology was similar in the coating of both ternary DPPC and DSPC microbubbles (1.5−8 μm diameter). The ternary DPPC microbubbles had a homogenous ligand distribution and significantly less liquid condensed (LC) phase area in their coating than the DSPC-based microbubbles. For ternary DSPC microbubbles, the ligand distribution and LC phase area in the coating depended on the lipid handling. The direct method resulted in a heterogeneous ligand distribution, less LC phase area than the indirect method, and the ligand colocalizing with the liquid expanded (LE) phase area. The indirect method resulted in a homogenous ligand distribution with the largest LC phase area. In conclusion, lipid handling prior to microbubble production is of importance for a ternary mixture of DSPC, PEG40-stearate, and DSPE-PEG2000

    Combined Confocal Microscope and Brandaris 128 Ultra-High-Speed Camera

    Get PDF
    textabstractControlling microbubble-mediated drug delivery requires the underlying biological and physical mechanisms to be unraveled. To image both microbubble oscillation upon ultrasound insonification and the resulting cellular response, we developed an optical imaging system that can achieve the necessary nanosecond temporal and nanometer spatial resolutions. We coupled the Brandaris 128 ultra-high-speed camera (up to 25 million frames per second) to a custom-built Nikon A1R+ confocal microscope. The unique capabilities of this combined system are demonstrated with three experiments showing microbubble oscillation leading to either endothelial drug delivery, bacterial biofilm disruption, or structural changes in the microbubble coating. In conclusion, using this state-of-the-art optical imaging system, microbubble-mediated drug delivery can be studied with high temporal resolution to resolve microbubble oscillation and high spatial resolution and detector sensitivity to discern cellular response. Combining these two imaging technologies will substantially advance our knowledge on microbubble behavior and its role in drug delivery

    Vancomycin-decorated microbubbles as a theranostic agent for Staphylococcus aureus biofilms

    No full text
    Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management. The antibiotic vancomycin was chemically coupled to the lipid shell of microbubbles and validated using mass spectrometry and high-axial resolution 4Pi confocal microscopy. Theranostic proof-of-principle was investigated by demonstrating the specific binding of vancomycin-decorated microbubbles (vMB) to statically and flow grown Staphylococcus aureus (S. aureus) biofilms under increasing shear stress flow conditions (0–12 dyn/cm2), as well as confirmation of microbubble oscillation and biofilm disruption upon ultrasound exposure (2 MHz, 250 kPa, and 5,000 or 10,000 cycles) during flow shear stress of 5 dyn/cm2 using time-lapse confocal microscopy combined with the Brandaris 128 ultra-high-speed camera. Vancomycin was successfully incorporated into the microbubble lipid shell. vMB bound significantly more often than control microbubbles to biofilms, also in the presence of free vancomycin (up to 1000 µg/mL) and remained bound under increasing shear stress flow conditions (up to 12 dyn/cm2). Upon ultrasound insonification biofilm area was reduced of up to 28%, as confirmed by confocal microscopy. Our results confirm the successful production of vMB and support their potential as a new theranostic tool for S. aureus biofilm infections by allowing for specific bacterial detection and biofilm disruption.</p
    corecore