31 research outputs found

    Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence.

    Get PDF
    To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder

    Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation

    Get PDF
    Naive human embryonic stem cells (hESCs) can be derived from primed hESCs or directly from blastocysts, but their X chromosome state has remained unresolved. Here, we show that the inactive X chromosome (Xi) of primed hESCs was reactivated in naive culture conditions. Like cells of the blastocyst, the resulting naive cells contained two active X chromosomes with XIST expression and chromosome-wide transcriptional dampening and initiated XIST-mediated X inactivation upon differentiation. Both establishment of and exit from the naive state (differentiation) happened via an XIST-negative XaXaintermediate. Together, these findings identify a cell culture system for functionally exploring the two X chromosome dosage compensation processes in early human development: X dampening and X inactivation. However, remaining differences between naive hESCs and embryonic cells related to mono-allelic XIST expression and non-random X inactivation highlight the need for further culture improvement. As the naive state resets Xiabnormalities seen in primed hESCs, it may provide cells better suited for downstream applications

    Efficient Many-To-Many Point Matching in One Dimension

    No full text
    Appears in Graphs and Combinatorics, vol. 23 (2007), supplement, Computational Geometry and Graph Theory. The Akiyama-Chvatal Festschrift. The original publication is available at www.springerlink.com. Abstract. Let S and T be two sets of points with total cardinality n. The minimum-cost many-to-many matching problem matches each point in S to at least one point in T and each point in T to at least one point in S, such that sum of the matching costs is minimized. Here we examine the special case where both S and T lie on the line and the cost of matching s ∈ S to t ∈ T is equal to the distance between s and t. In this context, we provide an algorithm that determines a minimum-cost many-to-many matching in O(n log n) time, improving the previous best time complexity of O(n 2) for the same problem. 1
    corecore