14,203 research outputs found
Homogeneous nucleation: Comparison between two theories
The classical nucleation theory of Becker, D\"{o}ring and Zeldovich is
compared with the Langer coarse-grained field approach to the nucleation
phenomenon. Both formalisms have been applied to the condensation from a
supersaturated vapor. It is shown that the nucleation rate derived in the
classical theory can be expressed in a form equivalent to that of the field
nucleation theory. This equivalence serves as an explanation of the puzzling
fact that the numerical predictions of both theories for condensation of Xe and
CO are almost identical though the standard analytical expressions for the
nucleation rates are different. The results obtained can help to link the
theories of nucleation and their approximations.Comment: 12 pages, LaTeX, no figure
Space-Time Isogeometric Analysis of Parabolic Evolution Equations
We present and analyze a new stable space-time Isogeometric Analysis (IgA)
method for the numerical solution of parabolic evolution equations in fixed and
moving spatial computational domains. The discrete bilinear form is elliptic on
the IgA space with respect to a discrete energy norm. This property together
with a corresponding boundedness property, consistency and approximation
results for the IgA spaces yields an a priori discretization error estimate
with respect to the discrete norm. The theoretical results are confirmed by
several numerical experiments with low- and high-order IgA spaces
Electron and ion densities in interstellar clouds
A quantitative theory of ionization in diffuse clouds is developed which includes H(+) charge exchange with O. Dissociative charge exchange of He(+) with H2 plays an important role in the densities of H(+) and He(+). The abundance of HD is also discussed
Model calculations for diffuse molecular clouds
A steady state isobaric cloud model is developed. The pressure, thermal, electrical, and chemical balance equations are solved simultaneously with a simple one dimensional approximation to the equation of radiative transfer appropriate to diffuse clouds. Cooling is mainly by CII fine structure transitions, and a variety of heating mechanisms are considered. Particular attention is given to the abundance variation of H2. Inhomogeneous density distributions are obtained because of the attenuation of the interstellar UV field and the conversion from atomic to molecular hyrodgen. The effects of changing the model parameters are described and the applicability of the model to OAO-3 observations is discussed. Good qualitative agreement with the fractional H2 abundance determinations has been obtained. The observed kinetic temperatures near 80 K can also be achieved by grain photoelectron heating. The problem of the electron density is solved taking special account of the various hydrogen ions as well as heavier ones
Anomalous diffusion and stretched exponentials in heterogeneous glass-forming liquids: Low-temperature behavior
We propose a model of a heterogeneous glass forming liquid and compute the
low-temperature behavior of a tagged molecule moving within it. This model
exhibits stretched-exponential decay of the wavenumber-dependent, self
intermediate scattering function in the limit of long times. At temperatures
close to the glass transition, where the heterogeneities are much larger in
extent than the molecular spacing, the time dependence of the scattering
function crosses over from stretched-exponential decay with an index at
large wave numbers to normal, diffusive behavior with at small
wavenumbers. There is a clear separation between early-stage, cage-breaking
relaxation and late-stage relaxation. The spatial
representation of the scattering function exhibits an anomalously broad
exponential (non-Gaussian) tail for sufficiently large values of the molecular
displacement at all finite times.Comment: 9 pages, 6 figure
Silicon chemistry in interstellar clouds
Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon
Airborne measurements of cloud forming nuclei and aerosol particles at Kennedy Space Center, Florida
Results of airborne measurements of the sizes and concentrations of aerosol particles, ice nuclei, and cloud condensation nuclei that were taken at Kennedy Space Center, Florida, are presented along with a detailed description of the instrumentation and measuring capabilities of the University of Washington airborne measuring facility (Douglas B-23). Airborne measurements made at Ft. Collins, Colorado, and Little Rock, Arkansas, during the ferry of the B-23 are presented. The particle concentrations differed significantly between the clean air over Ft. Collins and the hazy air over Little Rock and Kennedy Space Center. The concentrations of cloud condensation nuclei over Kennedy Space Center were typical of polluted eastern seaboard air. Three different instruments were used to measure ice nuclei: one used filters to collect the particles, and the others used optical and acoustical methods to detect ice crystals grown in portable cloud chambers. A comparison of the ice nucleus counts, which are in good agreement, is presented
Maternal depression and youth internalizing and externalizing symptomatology: severity and chronicity of past maternal depression and current maternal depressive symptoms
Maternal depression is a well-documented risk factor for youth depression, and taking into account its severity and chronicity may provide important insight into the degree of risk conferred. This study explored the degree to which the severity/chronicity of maternal depression history explained variance in youth internalizing and externalizing symptoms above and beyond current maternal depressive symptoms among 171 youth (58 % male) ages 8 to 12 over a span of 3 years. Severity and chronicity of past maternal depression and current maternal depressive symptoms were examined as predictors of parent-reported youth internalizing and externalizing symptomatology, as well as youth self-reported depressive symptoms. Severity and chronicity of past maternal depression did not account for additional variance in youth internalizing and externalizing symptoms at Time 1 beyond what was accounted for by maternal depressive symptoms at Time 1. Longitudinal growth curve modeling indicated that prior severity/chronicity of maternal depression predicted levels of youth internalizing and externalizing symptoms at each time point when controlling for current maternal depressive symptoms at each time point. Chronicity of maternal depression, apart from severity, also predicted rate of change in youth externalizing symptoms over time. These findings highlight the importance of screening and assessing for current maternal depressive symptoms, as well as the nature of past depressive episodes. Possible mechanisms underlying the association between severity/chronicity of maternal depression and youth outcomes, such as residual effects from depressive history on mother–child interactions, are discussed.The current work was supported by grants from the National Institutes of Health (MH066077, PI: Martha C. Tompson, PhD; MH082861, PI: Martha C. Tompson, PhD;). (MH066077 - National Institutes of Health; MH082861 - National Institutes of Health)Published versio
Binaries are the best single stars
Stellar models of massive single stars are still plagued by major
uncertainties. Testing and calibrating against observations is essential for
their reliability. For this purpose one preferably uses observed stars that
have never experienced strong binary interaction, i.e. "true single stars".
However, the binary fraction among massive stars is high and identifying "true
single stars" is not straight forward. Binary interaction affects systems in
such a way that the initially less massive star becomes, or appears to be,
single. For example, mass transfer results in a widening of the orbit and a
decrease of the luminosity of the donor star, which makes it very hard to
detect. After a merger or disruption of the system by the supernova explosion,
no companion will be present.
The only unambiguous identification of "true single stars" is possible in
detached binaries, which contain two main-sequence stars. For these systems we
can exclude the occurrence of mass transfer since their birth. A further
advantage is that binaries can often provide us with direct measurements of the
fundamental stellar parameters. Therefore, we argue these binaries are worth
the effort needed to observe and analyze them. They may provide the most
stringent test cases for single stellar models.Comment: 5 pages, 1 figure, contribution to the proceedings of "The
multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph.
Coll., 12-16 July 201
Direct Identification of the Glass Transition: Growing Length Scale and the Onset of Plasticity
Understanding the mechanical properties of glasses remains elusive since the
glass transition itself is not fully understood, even in well studied examples
of glass formers in two dimensions. In this context we demonstrate here: (i) a
direct evidence for a diverging length scale at the glass transition (ii) an
identification of the glass transition with the disappearance of fluid-like
regions and (iii) the appearance in the glass state of fluid-like regions when
mechanical strain is applied.
These fluid-like regions are associated with the onset of plasticity in the
amorphous solid. The relaxation times which diverge upon the approach to the
glass transition are related quantitatively.Comment: 5 pages, 5 figs.; 2 figs. omitted, new fig., quasi-crystal discussion
omitted, new material on relaxation time
- …