19,656 research outputs found
Excitation Chains at the Glass Transition
The excitation-chain theory of the glass transition, proposed in an earlier
publication, predicts diverging, super-Arrhenius relaxation times and, {\it
via} a similarly diverging length scale, suggests a way of understanding the
relations between dynamic and thermodynamic properties of glass-forming
liquids. I argue here that critically large excitation chains play a role
roughly analogous to that played by critical clusters in the droplet model of
vapor condensation. The chains necessarily induce spatial heterogeneities in
the equilibrium states of glassy systems; and these heterogeneities may be
related to stretched-exponential relaxation. Unlike a first-order condensation
point in a vapor, the glass transition is not a conventional phase
transformation, and may not be a thermodynamic transition at all.Comment: 4 pages, no figure
Presupernova evolution of accreting white dwarfs with rotation
We discuss the effects of rotation on the evolution of accreting
carbon-oxygen white dwarfs, with the emphasis on possible consequences in Type
Ia supernova (SN Ia) progenitors. Starting with a slowly rotating white dwarf,
we simulate the accretion of matter and angular momentum from a quasi-Keplerian
accretion disk. The role of the various rotationally induced hydrodynamic
instabilities for the transport of angular momentum inside the white dwarf is
investigated. We find that the dynamical shear instability is the most
important one in the highly degenerate core. Our results imply that accreting
white dwarfs rotate differentially throughout,with a shear rate close to the
threshold value for the onset of the dynamical shear instability. As the latter
depends on the temperature of the white dwarf, the thermal evolution of the
white dwarf core is found to be relevant for the angular momentum
redistribution. As found previously, significant rotation is shown to lead to
carbon ignition masses well above 1.4 Msun. Our models suggest a wide range of
white dwarf explosion masses, which could be responsible for some aspects of
the diversity observed in SNe Ia. We analyze the potential role of the bar-mode
and the r-mode instability in rapidly rotating white dwarfs, which may impose
angular momentum loss by gravitational wave radiation. We discuss the
consequences of the resulting spin-down for the fate of the white dwarf, and
the possibility to detect the emitted gravitational waves at frequencies of 0.1
>... 1.0 Hz in nearby galaxies with LISA. Possible implications of fast and
differentially rotating white dwarf cores for the flame propagation in
exploding white dwarfs are also briefly discussed.Comment: 22 pages, 16 figures, Accepted to A&
Childhood mental health: an ecological analysis of the effects of neighborhood characteristics
Research on childhood mental illness traditionally examines risk factors most proximal to the child. However, current trends reflect growing interest in how broader contextual factors contribute to psychopathology risk. In this study, we examined neighborhood‐level indicators as potential sources of chronic strain in a sample of 156 mother–child dyads; children were 8 to 12 years old. For most neighborhood indicators, data were collected at the level of census tracts using publicly available data sets. We hypothesized that these indicators would be both associated with greater overall mental health symptoms and specifically predictive of childhood symptoms of depression. We also examined potential mediators (maternal functioning and family cohesion) and moderators (maternal depression). Neighborhood indicators correlated with parents’ ratings of children's overall mental health problems, but did not correlate with children's self‐report of depression symptoms. Maternal functioning mediated neighborhood effects on children's overall mental health problems. Implications and directions for future research are presented.The current work was supported by the following grants from the National Institutes of Health, National Institute of Mental Health MH066077, MH082861, PI: Martha C. Tompson, Ph.D. and MH082861S1, PI: Gail N. Kemp, M.A., M.P.H. (MH066077 - National Institutes of Health, National Institute of Mental Health; MH082861 - National Institutes of Health, National Institute of Mental Health; MH082861S1 - National Institutes of Health, National Institute of Mental Health)Published versio
Maternal depression and youth internalizing and externalizing symptomatology: severity and chronicity of past maternal depression and current maternal depressive symptoms
Maternal depression is a well-documented risk factor for youth depression, and taking into account its severity and chronicity may provide important insight into the degree of risk conferred. This study explored the degree to which the severity/chronicity of maternal depression history explained variance in youth internalizing and externalizing symptoms above and beyond current maternal depressive symptoms among 171 youth (58 % male) ages 8 to 12 over a span of 3 years. Severity and chronicity of past maternal depression and current maternal depressive symptoms were examined as predictors of parent-reported youth internalizing and externalizing symptomatology, as well as youth self-reported depressive symptoms. Severity and chronicity of past maternal depression did not account for additional variance in youth internalizing and externalizing symptoms at Time 1 beyond what was accounted for by maternal depressive symptoms at Time 1. Longitudinal growth curve modeling indicated that prior severity/chronicity of maternal depression predicted levels of youth internalizing and externalizing symptoms at each time point when controlling for current maternal depressive symptoms at each time point. Chronicity of maternal depression, apart from severity, also predicted rate of change in youth externalizing symptoms over time. These findings highlight the importance of screening and assessing for current maternal depressive symptoms, as well as the nature of past depressive episodes. Possible mechanisms underlying the association between severity/chronicity of maternal depression and youth outcomes, such as residual effects from depressive history on mother–child interactions, are discussed.The current work was supported by grants from the National Institutes of Health (MH066077, PI: Martha C. Tompson, PhD; MH082861, PI: Martha C. Tompson, PhD;). (MH066077 - National Institutes of Health; MH082861 - National Institutes of Health)Published versio
The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance
We present a numerical investigation of the contribution of the presupernova
ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts
(GRBs), and describe how this external matter can affect the observable
afterglow characteristics. An implicit hydrodynamic calculation for massive
stellar evolution is used here to provide the inner boundary conditions for an
explicit hydrodynamical code to model the circumstellar gas dynamics. The
resulting properties of the circumstellar medium are then used to calculate the
deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow
light curve produced as the shock wave propagates through the shocked-wind
medium. We find that variations in the stellar wind drive instabilities that
may produce radial filaments in the shocked-wind region. These comet-like tails
of clumps could give rise to strong temporal variations in the early afterglow
lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the
stellar progenitor; a wide diversity of behaviors may be the rule, rather than
the exception.Comment: 17 pages, 7 figures, ApJ in pres
On the Collapsar Model of Long Gamma-Ray Bursts: Constraints from Cosmic Metallicity Evolution
We explore the consequences of new observational and theoretical evidence
that long gamma-ray bursts prefer low metallicity environments. Using recently
derived mass-metallicity correlations and the mass function from SDSS studies,
and adopting an average cosmic metallicity evolution from \citet{kewley2005}
and \citet{savaglio2005} we derive expressions for the the relative number of
massive stars formed below a given fraction of solar metallicity, ,
as function of redshift. We demonstrate that about 1/10th of all stars form
with . Therefore, a picture where the majority of GRBs form
with is not inconsistent with an empirical global SN/GRB ratio
of 1/1000. It implies that (1) GRB's peak at a significantly higher redshift
than supernovae; (2) massive star evolution at low metallicity may be
qualitatively different and; (3) the larger the low-metallicity bias of GRBs
the less likely binary evolution channels can be significant GRB producers.Comment: 12 pages, 2 figures; accepted as ApJ Lette
Separator development for a heat sterilizable battery Quarterly report, 1 Jun. - 30 Sep. 1966
Filler and matrix composite materials for use in silver-zinc battery separator
- …
