24 research outputs found

    The Design of Very Fast Portable Compilers

    Get PDF
    The Amsterdam Compiler Kit is a widely used compiler building system. Up until now, the emphasis has been on producing good object code. In this paper we describe recent work that has focused on reducing compile time. The techniques described in this paper have resulted in C compilers for the Sun-3 and VAX that are 3 to 4 times faster than the native compilers provided by the manufacturers. 1

    Op tijd voor energie

    No full text
    Electrical Engineering, Mathematics and Computer Scienc

    Modern Compiler Design.

    No full text

    Continuous sensing on intermittent power

    No full text
    The main obstacles to achieve truly ubiquitous sensing are (i) the limitations of battery technology - batteries are short-lived, hazardous, bulky, and costly - and (ii) the unpredictability of ambient power. The latter causes sensors to operate intermittently, violating the availability requirements of many real-world applications. In this paper, we present the Coalesced Intermittent Sensor (CIS), an intermittently-powered sensor that senses continuously! Although a single node will frequently be off charging, a group of nodes can -in principle- sense 24/7 provided that their awake times are spread apart. As communication is too expensive, we rely on inherent component variations that induce small differences in power cycles. This basic assumption has been verified through measurements of different nodes and power sources. However, desynchronizing nodes is not enough. An important finding is that a CIS designed for certain (minimal) energy conditions will become synchronized when the available energy exceeds the design point. Nodes employing a sleep mode (to extend their availability) do wake up collectively at some event, process it, and return to charging as the remaining energy is typically too low to handle another event. This results in multiple responses (bad) and missing subsequent events (worse) due to the synchronized charging. To counter this undesired behavior we designed an algorithm to estimate the number of active neighbors and respond proportionally to an event. We show that when intermittent nodes randomize their responses to events, in favorable energy conditions, the CIS reduces the duplicated captured events by 50% and increases the percentage of capturing entire bursts above 85%.</p

    A geometrical perspective on localization

    Get PDF
    A large number of localization algorithms for wireless sensor networks (WSNs) are evaluated against the Cramer-Rao Bound (CRB) as an indicator of how good the algorithm performs. The CRB defines the lower bound on the precision of an unbiased localization estimator. The CRB concept, borrowed from GPS localization, however, does not translate well to WSNs. In this paper, we show in which cases the CRB fails to capture troublesome anchor configurations leading to erroneous lower bounds. We continue with a study on the geometrical configurations of anchors favorable to localization algorithms. We conclude by proposing a metric to characterize the stability of the geometry of a certain anchor topology. Future work will address the combination of geometry and statistical metrics with the goal of obtaining a clear image on localization algorithms boundaries

    Continuous sensing on intermittent power

    No full text
    The main obstacles to achieve truly ubiquitous sensing are (i) the limitations of battery technology - batteries are short-lived, hazardous, bulky, and costly - and (ii) the unpredictability of ambient power. The latter causes sensors to operate intermittently, violating the availability requirements of many real-world applications. In this paper, we present the Coalesced Intermittent Sensor (CIS), an intermittently-powered sensor that senses continuously! Although a single node will frequently be off charging, a group of nodes can -in principle- sense 24/7 provided that their awake times are spread apart. As communication is too expensive, we rely on inherent component variations that induce small differences in power cycles. This basic assumption has been verified through measurements of different nodes and power sources. However, desynchronizing nodes is not enough. An important finding is that a CIS designed for certain (minimal) energy conditions will become synchronized when the available energy exceeds the design point. Nodes employing a sleep mode (to extend their availability) do wake up collectively at some event, process it, and return to charging as the remaining energy is typically too low to handle another event. This results in multiple responses (bad) and missing subsequent events (worse) due to the synchronized charging. To counter this undesired behavior we designed an algorithm to estimate the number of active neighbors and respond proportionally to an event. We show that when intermittent nodes randomize their responses to events, in favorable energy conditions, the CIS reduces the duplicated captured events by 50% and increases the percentage of capturing entire bursts above 85%.Embedded and Networked System

    A principled design for passive light communication

    No full text
    To take advantage of Visible Light Communication (VLC) for low-power applications, such as IoT tags, researchers have been developing systems to modulate (backscatter) ambient light using LC shutters. Various approaches have been explored for single-pixel transmitters, but without following a principled approach. This has resulted in either relatively low data rates, short ranges, or the need for powerful artificial light sources. This paper takes a step back and proposes a more theoretical framework: ChromaLux. By considering the fundamental characteristics of liquid crystals (birefringence and thickness), we demonstrate that the design space is way larger than previously explored, allowing for much better systems. In particular, we uncover the existence of a transient state where the switching time can be reduced by an order of magnitude without lowering the contrast significantly, improving both range and data rate. Using a prototype, we demonstrate that our framework is applicable to different LCs. Our results show significant improvements over state-of-the-art single-pixel systems, achieving ranges of 50 meters at 1 kbps and with bit-error-rates below 1%. Embedded and Networked System

    Fast network congestion detection and avoidance using P4

    No full text
    Along with exciting visions for 5G communications and the Tactile Internet, the networking requirement of attaining extremely low end-to-end latency has appeared. While network devices are typically equipped with buffers to counteract packet loss caused by short-lived traffic bursts, the more those buffers get filled, the more delay is added to every packet passing through.In this paper, we develop congestion avoidance methods that harness the power of fully programmable data-planes. The corresponding programmable switches, through languages such as P4, can be programmed to gather and react to important packet meta-data, such as queue load, while the data packets are being processed. In particular, we enable P4 switches to (1) track processing and queuing delays of latency-critical flows and (2) react immediately in the data-plane to congestion by rerouting the affected flows. Through a proof-of-concept implementation in emulation and on real hardware, we demonstrate that a data-plane approach reduces average and maximum delay, as well as jitter, when compared to non-programmable approaches
    corecore