
The Design of Very Fast Portable Compilers

Andrew S. Tanenbaum
M. Frans Kaashoek

Koen G. Langendoen*
Ceriel J.H. Jacobs**

Department of Mathematics and Computer Science
Vfije Universiteit

Amsterdam, The Netherlands
Emaih ast@cs.vu.nl

ABSTRACT

The Amsterdam Compiler Kit is a widely used compiler building system. Up until now,

the emphasis has been on producing good object code. In this paper we describe recent

work that has focused on reducing compile time. The techniques described in this paper

have resulted in C compilers for the Sun-3 and VAX that are 3 to 4 times faster than the

native compilers provided by the manufacturers.

1. INTRODUCTION

The Amsterdam Compiler Kit (ACK) (Tanenbaum et al., 1983) is a tool kit for building
compilers. Very briefly, a source program is run through a program called a front end, which
converts it to an intermediate language called EM. This language resembles the assembly
language for an abstract stack machine.

The EM version of the program can then be run through a peephole and a global optimizer
to improve code quality. With or without optimization, the EM code is then fed into a program
called a back end that converts the EM code to the assembly language of the target machine.
This too, can be optimized, and then assembled to the final binary executable program. The
back end, final optimizer, and assembler are machine and language-independent programs that
are driven by machine-specific tables. The various steps resemble a UNIXt pipeline, as shown
in Fig. 1.

•bl•er] Binary

program

Fig. 1. Structure of the Amsterdam Compiler Kit.

* Present address: Vakgroep Informatica, Universiteit van Amsterdam, Amststerdam
** This work was supported in part by the Stichfing Technische Wetenschappen (STW) under grant

VWI55.0853.
t UNIX is a Registered Trademark of AT&T Bell Laboratories.

125 SIGPLAN Notices, Vol. 24, NO. ii

This scheme is highly flexible. It almost completely decouples the front end from the back
ends. At present front ends exist fbr Pascal, C, Modula-2, Basic, Orca, and Occam. Back ends
exist for the Motorola 68000 and 68020, Intel 8088 (with the 80386 in progress), DEC PDP-11
and VAX, Zilog Z80 and Z8000, National Semiconductor 16032, Mostek 6502, and others. By
combining a front end with a back end, we get a compiler for a given language-machine combi-
nation. Using the six languages and ten machines cited above, we can make 60 different com-
pilers.

To implement a new language, all that is necessary is to write a front end that converts the
language to the simple EM stack notation. Having done this, one automatically has optimizing
compilers for 10 different machines. Similarly, when a new machine appears, one has to write
tables for the back end, target optimizer, and assembler, and one suddenly has compilers for six
different languages for that machine.

2. THE ORIGINAL IMPLEMENTATION

To provide the maximum flexibility, each of the six passes of Fig. 1 was written as a
separate program, accepting an input and producing an output, in the style of all UNIX filters.
While this program organization had no influence on the quality of the generated code, it did
affect the speed of compilation, as a large amount of information had to be passed through the
pipeline. To reduce the volume of traffic in the pipeline, a data compression technique was
employed. Some of the time gained by having fewer bytes to read and write was lost due to the
overhead required in compressing and decompressing the data at every stage.

A second source of overhead was the need to load up to six fairly large programs from the
disk for each compilation. In an environment such as is commonly found at universities these
days, with diskless workstations and central file servers, loading all the compiler passes requires
substantial network I/O in addition to the disk I/O.

A third source of overhead was the code generation algorithm used by the back end. This
algorithm examined sequences of incoming EM instructions and matched them against a large
and complex table, looking for the best matches. In many cases multiple matches can be found
(corresponding to different code sequences), so searching multiple paths is necessary to find the
best one.

All these factors, plus the presence of three optimizers clearly biased the system in favor of
producing good code at the expense of fast compilation. Nevertheless, we eventually came to
realize that for many applications, such as debugging and student programming labs, compile
speed is much more important than execution speed. This realization led to an alternative way
to implement the pipeline.

3. THE DESIGN FOR FAST COMPILATION

Two things were clear from the beginning of the redesign. First, a simpler but faster code
generation scheme was needed, even if this meant sacrificing some execution efficiency.
Second, the modularity provided by having independent programs for each pass was an expen-
sive luxury we could not afford.

Solving the first problem was relatively straightforward. Instead of matching sequences of
EM instructions against sequences in the back end's tables, we decided to treat each EM instruc-
tion as a simple macro to be expanded into a fixed pattern of target machine instructions (with
parameter substitution). Conceptually, when the backend reads an incoming EM instruction, it
uses the opcode number as an index into a table to find the corresponding byte string to output.
(The actual implementation is different, as described below, but this table-lookup gives the
basic idea.)

126

Tackling the second problem was also easy. All the existing front ends have been designed
in a structurally similar way. When a front end wants to generate a particular EM instruction,
say XXX, it does not just call the C function printf, but instead calls gen~cxx which handles data
compression internally and then does the actual output. What we have done is replace all the
gen_?cxx routines with a different set (i.e., a different library), in which the new routines do the
macro expansion directly and output relocatable binary code. In this way the entire compiler is
reduced to a single program, eliminating all the pipes and intermediate data streams.

4. IMPLEMENTATION OF THE FAST COMPILERS

A new-style back end is based on two tables. The first one gives for each EM instruction
its expansion into symbolic (i.e., ASCII) assembly language. The second table gives the binary
output for each assembly language instruction. This approach is much simpler for the compiler
writer than having to specifiy the direct mapping from EM instructions to relocatable binary.
After both tables have been written, the ACK tools combine them so that there is, in fact, a
direct mapping between EM instructions and relocatable binary.

The result of combining these two tables is a set of C functions of the form g e n x x x , one
per EM instruction, which when called, directly output the proper relocatable binary code onto
the output file (Kaashoek and Langendoen, 1988). The next step consists of linking the front
end to these routines to produce an executable binary of the compiler. This binary contains the
front end, which makes calls on routines that directly produce relocatable binary code for the
relevant target machine. Thus the combination of the two tables is done once--at the time the
the compiler itself is being produced. It is not done when individual programs are being com-
piled.

In addition to producing the EM to assembly language and assembly language to binary
tables, the compiler writer has to provide a few C routines, such as a routine that generates the
code for procedure entry (setting up the stack frame, etc.). Also required are the definitions of
bytes, words, longs, pointers, segments, symbols, alignment, and other such items to customize
the compiler to a particular target machine.

Although the goal of this design was to minimize compilation time without regard to object
code quality (after all, the original compilers were still available), it soon became apparent that
a small amount of optimization could greatly improve the object code quality at virtually no
penalty in compile speed. Consider, for example, the assignment statement i = j + k;, where i, j,
and k are 4-byte integer variables in memory. The EM code produced is:

lol j
lol k
adi 4
s t i

/ push j onto the stack
/ push k onto the stack
/ add the two 4-byte integers on the stack
/ pop a word from the stack and store it in i

Now consider the code that would normally be produced from this EM code using the most
straightforward macro expansion. This example is for a typical register machine using a scratch
register rl and a stack pointer, sp. The notation "move a,b" means move a to b.

push j
push k
pop rl
add (sp)+,rl
push rl
pop i

/ push j onto the stack (expansion of lol j)
/ push k onto the stack (expansion of lol k)
/ fetch k (expansion of adi 4)
/ add j to k (expansion of adi 4)
/ push the sum (expansion of adi 4)
/ store the sum in i (expansion of stl i)

127

The optimization that immediately springs to mind is the replacement of push/pop sequences by
a single instruction. Applying this optimization we get:

pushj
move k,rl
add (sp)+,rl
move rl , i

/ push j onto the stack
/ move k to rl
/ add j to rl
/ move the sum to i

This code is not optimal, of course, but it is only one instruction worse than the best possible
code for register machines, which is

move j,rl
add k,rl
move rl , i

/ movej to rl
/ add k to rl
/ store the sum in i

Thus by applying a very simple peephole optimization to the straightforward macro expansion,
we produce code that is only slightly worse than the best possible code. Since the additional
compilation time needed to check for a small number of optimizations of this kind is negligible,
we have provided a mechanism for the compiler writer to specify this kind of peephole optimi-
zation. Furthermore, most of the overhead in performing the optimization is recouped in having
fewer bytes to write to the output file.

Two points are worth emphasizing. First, the fast back ends directly produce relocatable
object code instead of symbolic (ASCII) assembly code that must be processed by a separate
assembler. This approach gains a considerable amount of performance by not having to load the
assembler and rescan the input.

Second, making back ends in this form is much easier than making a conventional back
end. Writing roughly 100 macros takes typically two weeks, whereas writing a full-blown
optimizing back end table can take as much as six months.

5. PERFORMANCE OF THE RESULTING COMPILERS

The old saying "The proof of the pudding is in the eating" also applies to compilers. To
see how fast our compilers were, we ran extensive benchmarks on the Sun 3/50 and the VAX
11/750, comparing our new compilers with the standard UNIX C compilers on those machines.
We could have equally well done the benchmarking in Modula-2, or another language, but we
lacked universally accepted compilers to use as a reference.

The benchmarks consisted of compiling a number of the standard UNIX utility programs
using the standard UNIX compiler, cc, and our new fast compiler, fcc. The tests were made in
two ways, pure compilation (cc -c prog.c) and compilation plus linking (cc prog.c). In the latter
case, the pure differences in compiler speed are diluted by the addition of the link phase. The cc
-c prog.c test is probably the more important of the two, however, since in programming pro-
jects using make there are typically many compilations for each call to the linker.

The data with the program sizes (number of bytes and number of lines), and the compila-
tion times (in seconds) for the Sun 3/50 and VAX 11/750 are given in Fig. 2. The sizes are
those before the C preprocessor has been run. In Fig. 3 the fcc/cc ratios as a function of pro-
gram size are plotted. These curves are derived from the data presented in Fig. 2.

128

file __#_bytes _~
null,c 1

time.c

cal.c

cat.c

Cp°C,
m v , c

1104

1713

2656

3949

4 8 0 0

5885

7565

10809

Compile times Sun 3/50

lines

60

122

204

223

242

311

5.1

fcc cc

2.1

4.3

4.0

3.8

4.8

5.4 13.1

6.4

5.0

5.3
5.9

9.6

6.2

6.5

9.6

10.8

9.8 19.8

9.4

9°3

10.0

11.2

fCC -C

0.2

0.9

0.8

0.7

1.2

1.7

grep.c

dd.c
524

610

CC -C

3.9

6.1

6.4

6.8

6.8

8.1

11.2 2.0 8.8
11.3 1.8 8.7

13.2 2.4 10.7

3.9

tc.c 11739 637 16.2 3.0 13.6
ls.c 14406 701 19.4 3.8 14.4

0d.c 16805 883 15.8 3.0 14.7

ctags.c 19856 1029 21.6 3.7 16.9

ed.c 24850 1762 25.4 5.3 22.5

tar.c 26861 1417 26.2 6.8 21.3
sccs.c 31956 1557 15.8

Compile times VAX 11/750
file ! # bytes # lines fcc J cc fcc-c cc -c

null.c I 11 3 3.8 5.5 0.9 3.0
time.c 1104 60

3949

cmp.c 1713 122

cal.c 2656 204
cat.c 223

7.3 10.5 3.1 6.3
5.5 12.3 2.8 7.9

5.1 11.5 2.6 9.3

9.6 17.5 5.8 16.0

15.1 cp.c 4800 242 9.4 19.2 6.1

mv.c 5885 311 12.3 19.1 9.2 16.1
,, , ,,,,

grep.c 7565 524 11.9 20.2 9.0 17.2
dd.c 10809 610 14.6

11739

14406

16805

19856

24850

tc.c

lS.C

637
701

883

1029

1762

1417

1557

od.c

ctags.c

ed.c

20.5
19.7

17.0

17.1

26.2

27.9

22.8

t a l c

24.9 9.9 22.9
48.1 17.7 47.5
41.8 14.1

35.9

42.9

63.0

64.7

45.8 SCCS.C

14.5

13.4

21.9

23.4

15.9

26861

31956

38.5

33.9

37.9

58.1

56.9

42.9

Fig. 2. Program sizes and compilation times on the Sun 3/50 and VAX 11/750.

129

I III I II ¸ ! I II i ~) 5 i •

10
Sun 3/50

9

8

7

6

5 without 1 ading and linking

4

3 - .. o" * '*°

• & A '~ ~"A'" "" .~'" ". " . ""A...
• * ., .,.° °°

2 - ' "a'A" "'.a..A" ~ "'.,." A ~°"

with loading and linking

1

I I I I I I I
1 5 10 15 2 0 2 5 30

File Size (Kbytes)

_

_

_

/ ~ VAX 11/750

: ". -:" " " " " "A A" "" "" ".

: ~.'"
" ' A

I ~1 I I I I 1
1 5 10 15 2 0 2 5 30

File Size (Kbytes)

Fig. 3. Ratio of compile timesfcc/cc on the Sun 3/50 and VAX 11/7/50.

1 3 0

6o DISCUSSION

From Fig. 3 we see that on the Sun,fcc -c is 5 to 10 times faster than cc -c for files smaller
than 5K, and about 4 times faster for larger files. For the VAX, the speedup is about 2 to 3
times, independent of the file size.

The difference between the Sun and VAX is primarily due to the fact that the VAX com-
piler is a relatively faster compiler. The effect of program size on compilation speed is related
to the time it takes to load the compiler. For very small programs, the dominant effect is how
big the compiler, assembler, and linker are, rather than how fast they are. Most of the time is
spent loading them, rather than running them. The fcc code is a single program that reads the
source and produces relocatable .o files. It is considerably smaller than the Sun or VAX com-
piler + assembler. Bothfcc and cc use the same linker, so that cancels out.

It is clear from the measurements that eliminating all the passes and the heuristic search for
optimal code has led to a major improvement in compile speed. Due to the structure of ACK,
the faster code generation applies not only to C, but to Modula-2 and the other languages for
which a front end exists, so the modularity and portability have not been lost.

The code quality is not nearly as good with the fast compiler, but that problem can easily
be finessed. While debugging a program, one uses the fast compiler, since execution speed is
irrelevant until the program has been at least moderately debugged. Once that point has been
reached, the normal compiler can be used to produce a .o file with good execution speed. For
programs consisting of multiple files, work can then begin on the next file, again using the fast
compiler. The .o files produced by the normal and fast compilers are compatible, so that during
development, there is no problem mixing a collection of files, the debugged ones using the nor-
mal compiler and the ones being worked on produced by the fast compiler.

When the entire program has been debugged, the global optimizer (Bal and Tanenbaum,
1986) can be used to produce extremely high quality code. Thus by choosing among fast com-
pilation, normal compilation, and global optimization, one can have the benefits of fast compila-
tion during debugging and fast execution during production.

The fast compilers for C, Modula-2, and Pascal are now available. Interested parties
should contact the authors (by email, if possible) for more information.

AC KNOWLEDGEMENTS

We would like to thank Henri Bal and Dick Grune for their help, suggestions, and general
advice concerning this project.

REFERENCES
Bal, H.E. and Tanenbaum, A.S.: "Language and Machine-Independent Global Optimization on

Intermediate Code," Computer Languages vol. 11, pp. 105-121, 1986.

Kaashoek, F., and Langendoen, K.: "The Code Expander Generator," Dept. of Math. and Com-
puter Science Report IM-9, Vrije Universiteit, 1988.

Tanenbaum, A.S., van Staveren, H., Keizer, E.G., and Stevenson, J.W.: "A Practical Toolkit for
Making Portable Compilers," Commun. ACM, vol. 26, pp. 654-660, Sept. 1983.

f

131

