2,302 research outputs found

    Linear and generalized linear models for the detection of QTL effects on within-subject variability

    Get PDF
    Quantitative trait loci (QTLs) may affect not only the mean of a trait but also its variability. A special aspect is the variability between multiple measured traits of genotyped animals, such as the within-litter variance of piglet birth weights. The sample variance of repeated measurements is assigned as an observation for every genotyped individual. It is shown that the conditional distribution of the non-normally distributed trait can be approximated by a gamma distribution. To detect QTL effects in the daughter design, a generalized linear model with the identity link function is applied. Suitable test statistics are constructed to test the null hypothesis H0: No QTL with effect on the within-litter variance is segregating versus HA: There is a QTL with effect on the variability of birth weight within litter. Furthermore, estimates of the QTL effect and the QTL position are introduced and discussed. The efficiency of the presented tests is compared with a test based on weighted regression. The error probability of the first type as well as the power of QTL detection are discussed and compared for the different tests

    Observation of sensible and latent heat flux profiles with lidar

    Get PDF
    We present the first measurement of the sensible heat flux (H) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the H measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (L) and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)2^{2} Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height zi_{i} was at 1230 m above ground level. The results show – as expected – positive values of H in the middle of the CBL. A maximum of (182±32) W m2^{-2}, with the second number for the noise uncertainty, is found at 0.5 zi_{i}. At about 0.7 zi_{i}, H changes sign to negative values above. The entrainment flux was (−62±27) W m2^{-2}. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 zi_{i} was −0.28 W m3^{-3}, which corresponds to a warming of 0.83 K h1^{-1}. The L profile shows a slight positive mean flux divergence of 0.12 W m3^{-3} and an entrainment flux of (214±36) W m2^{-2}. The combination of H and L profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes

    Visualization of keratin with diffuse reflectance and autofluorescence imaging and nonlinear optical microscopy in a rare keratinopathic ichthyosis

    Get PDF
    Funding Information: Funding: This work was supported by grants from the National Research, Development and Innovation Office of Hungary—NKFIH (FK_131916, 2019 (Semmelweis University, M.M.)), EFOP-3.6.3-VEKOP-16-2017-00009 (P.A., S.B.); the New National Excellence Program of the Ministry for Innovation and Technology (ÚNKP-20-4-II-SE-7 (N.K.), ÚNKP-19-3-I-SE-78 (L.F.)); and the European Regional Development Fund project “Time-resolved autofluorescence methodology for noninvasive skin cancer diagnostics” (no. 1.1.1.2/16/I/001, agreement no. 1.1.1.2/VIAA/1/16/014 (I.L., A.L., M.L.)). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Keratins are one of the main fluorophores of the skin. Keratinization disorders can lead to alterations in the optical properties of the skin. We set out to investigate a rare form of keratinopathic ichthyosis caused by KRT1 mutation with two different optical imaging methods. We used a newly developed light emitting diode (LED) based device to analyze autofluorescence signal at 405 nm excitation and diffuse reflectance at 526 nm in vivo. Mean autofluorescence intensity of the hyperkeratotic palmar skin was markedly higher in comparison to the healthy control (162.35 vs. 51.14). To further assess the skin status, we examined samples from affected skin areas ex vivo by nonlinear optical microscopy. Two-photon excited fluorescence and second-harmonic generation can visualize epidermal keratin and dermal collagen, respectively. We were able to visualize the structure of the epidermis and other skin changes caused by abnormal keratin formation. Taken together, we were able to show that such imaging modalities are useful for the diagnosis and follow-up of keratinopathic diseases.publishersversionPeer reviewe

    Autofluorescence imaging of the skin is an objective non-invasive technique for diagnosing pseudoxanthoma elasticum

    Get PDF
    Funding Information: Funding: This work was supported by grants from the National Research, Development and Innovation Office of Hungary—NKFIH [FK_131916, 2019 (Semmelweis University, M.M.); K_132695, 2019 (Semmelweis University, T.A.)], EFOP-3.6.3-VEKOP-16-2017-00009 (P.A., S.B.) the ÚNKP-20-4-II-SE-7 (N.K.) and ÚNKP-20-3-I-SE-24 (S.Z.) New National Excellence Program of the Ministry For Innovation and Technology from the source of the National Research, Development and Innovation Fund of Hungary and the European Regional Development Fund projects “Time-resolved autofluorescence methodology for non-invasive skin cancer diagnostics” [No. 1.1.1.2/16/I/001, agreement No. 1.1.1.2/VIAA/1/16/014 (A.L.)] and “Development and clinical validation of a novel cost effective multi-modal methodology for early diagnostics of skin cancers” [No. 1.1.1.2/16/I/001 agreement No. 1.1.1.2/VIAA/1/16/052 (I.L.)] and COST action CA16115 EuroSoftCalcNet. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Pseudoxanthoma elasticum (PXE) is a rare multisystemic autosomal recessive connective tissue disease. In most cases, skin manifestations of PXE are the first to develop, followed later by severe ocular and cardiovascular complications. In our present study, in addition to dermoscopy, we introduced novel techniques, autofluorescence (AF) and diffuse reflectance (DR) imaging for the assessment of affected skin sites of five PXE patients. PXE-affected skin areas in most skin sites showed a previously observed pattern upon dermoscopic examination. With the novel imaging, PXE-affected skin lesions displayed high AF intensity. During our measurements, significantly higher mean, minimum and maximum AF intensity values were found in areas of PXE-affected skin when compared to uninvolved skin. Conversely, images acquired with the use of 660 and 940 nm illumination showed no mentionable difference. Our results demonstrate that AF imaging may be used in the in vivo diagnostics and quantification of the severity of the skin lesions of PXE patients. In addition, it is a safe, fast and cost-effective diagnostic method. AF imaging may be also used to objectively monitor the efficacy of the possible novel therapeutic approaches of PXE in the future.publishersversionPeer reviewe

    Magnesium Anode Protection by an Organic Artificial Solid Electrolyte Interphase for Magnesium-Sulfur Batteries

    Get PDF
    In the search for post-lithium battery systems, magnesium–sulfur batteries have attracted research attention in recent years due to their high potential energy density, raw material abundance, and low cost. Despite significant progress, the system still lacks cycling stability mainly associated with the ongoing parasitic reduction of sulfur at the anode surface, resulting in the loss of active materials and passivating surface layer formation on the anode. In addition to sulfur retention approaches on the cathode side, the protection of the reductive anode surface by an artificial solid electrolyte interphase (SEI) represents a promising approach, which contrarily does not impede the sulfur cathode kinetics. In this study, an organic coating approach based on ionomers and polymers is pursued to combine the desired properties of mechanical flexibility and high ionic conductivity while enabling a facile and energy-efficient preparation. Despite exhibiting higher polarization overpotentials in Mg–Mg cells, the charge overpotential in Mg–S cells was decreased by the coated anodes with the initial Coulombic efficiency being significantly increased. Consequently, the discharge capacity after 300 cycles applying an Aquivion/PVDF-coated Mg anode was twice that of a pristine Mg anode, indicating effective polysulfide repulsion from the Mg surface by the artificial SEI. This was backed by operando imaging during long-term OCV revealing a non-colored separator, i.e. mitigated self-discharge. While SEM, AFM, IR and XPS were applied to gain further insights into the surface morphology and composition, scalable coating techniques were investigated in addition to ensure practical relevance. Remarkably therein, the Mg anode preparation and all surface coatings were prepared under ambient conditions, which facilitates future electrode and cell assembly. Overall, this study highlights the important role of Mg anode coatings to improve the electrochemical performance of magnesium–sulfur batteries

    Quantitative multispectral imaging differentiates melanoma from seborrheic keratosis

    Get PDF
    Funding Information: This work was supported by grants from the EFOP-3.6.3-VEKOP-16-2017-00009 (S.B., P.A.) EFOP-3.6.3-VEKOP-16 (S.B.) the ÚNKP-20-4-II-SE-7 (N.K.) and ÚNKP-20-3-I-SE-24 (S.Z.) New National Excellence Program of the Ministry For Innovation and Technology from the source of the National Research, Development and Innovation Fund of Hungary and the European Regional Development Fund projects “Time-resolved autofluorescence methodology for non-invasive skin cancer diagnostics” [No. 1.1.1.2/16/I/001, agreement No. 1.1.1.2/VIAA/1/16/014 (A.L.)] and “Development and clinical validation of a novel cost effective multi-modal methodology for early diagnostics of skin cancers” [No. 1.1.1.2/16/I/001 agreement No. 1.1.1.2/VIAA/1/16/052 (I.L.)] and the National Research, Development and Innovation Office of Hungary—NKFIH (FK_131916, 2019 (Semmelweis University, M.M.)). Publisher Copyright: © 2021 by the authors.Melanoma is a melanocytic tumor that is responsible for the most skin cancer-related deaths. By contrast, seborrheic keratosis (SK) is a very common benign lesion with a clinical picture that may resemble melanoma. We used a multispectral imaging device to distinguish these two entities, with the use of autofluorescence imaging with 405 nm and diffuse reflectance imaging with 525 and 660 narrow-band LED illumination. We analyzed intensity descriptors of the acquired images. These included ratios of intensity values of different channels, standard deviation and minimum/maximum values of intensity of the lesions. The pattern of the lesions was also assessed with the use of particle analysis. We found significantly higher intensity values in SKs compared with melanoma, especially with the use of the autofluorescence channel. Moreover, we found a significantly higher number of particles with high fluorescence in SKs. We created a parameter, the SK index, using these values to differentiate melanoma from SK with a sensitivity of 91.9% and specificity of 57.0%. In conclusion, this imaging technique is potentially applicable to distinguish melanoma from SK based on the analysis of various quantitative parameters. For this application, multispectral imaging could be used as a screening tool by general physicians and non-experts in the everyday practice.publishersversionPeer reviewe
    corecore