441 research outputs found

    Physical Adsorption at the Nanoscale: Towards Controllable Scaling of the Substrate-Adsorbate van der Waals Interaction

    Get PDF
    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on "local" dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10--20 nanometers. Comparison with recent experimental observation of ultra long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale

    Casimir Force on Real Materials - the Slab and Cavity Geometry

    Get PDF
    We analyse the potential of the geometry of a slab in a planar cavity for the purpose of Casimir force experiments. The force and its dependence on temperature, material properties and finite slab thickness are investigated both analytically and numerically for slab and walls made of aluminium and teflon FEP respectively. We conclude that such a setup is ideal for measurements of the temperature dependence of the Casimir force. By numerical calculation it is shown that temperature effects are dramatically larger for dielectrics, suggesting that a dielectric such as teflon FEP whose properties vary little within a moderate temperature range, should be considered for experimental purposes. We finally discuss the subtle but fundamental matter of the various Green's two-point function approaches present in the literature and show how they are different formulations describing the same phenomenon.Comment: 24 pages, 11 figures; expanded discussion, one appendix added, 1 new figure and 10 new references. To appear in J. Phys. A: Math. Theo

    Quantised Vortices in an Exciton-Polariton Fluid

    Get PDF
    One of the most striking quantum effects in a low temperature interacting Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its amazing features such as the persistence of superflows and the quantization of the angular momentum of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute atomic gases provided an exceptional opportunity to observe and study superfluidity in an extremely clean and controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has now been reported several times. Polaritons are strongly interacting light-matter quasi-particles, naturally occurring in semiconductor microcavities in the strong coupling regime and constitute a very interesting example of composite bosons. Even though pioneering experiments have recently addressed the propagation of a fluid of coherent polaritons, still no conclusive evidence is yet available of its superfluid nature. In the present Letter, we report the observation of spontaneous formation of pinned quantised vortices in the Bose-condensed phase of a polariton fluid by means of phase and amplitude imaging. Theoretical insight into the possible origin of such vortices is presented in terms of a generalised Gross-Pitaevskii equation. The implications of our observations concerning the superfluid nature of the non-equilibrium polariton fluid are finally discussed.Comment: 14 pages, 4 figure

    Transient four-wave mixing in T-shaped GaAs quantum wires

    Get PDF
    The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In this wire of 6.6×24 nm2 size, we find a one-dimensional confinement of more than 20 meV, an inhomogeneous broadening of 3.4 meV, an exciton binding energy of 12 meV, and a biexciton binding energy of 2.0 meV. A dispersion of the homogeneous linewidth within the inhomogeneous broadening due to phonon-assisted relaxation is observed. The exciton acoustic-phonon-scattering coefficient of 6.1±0.5 μeV/K is larger than in comparable quantum-well structures

    Geometry of River Networks II: Distributions of Component Size and Number

    Get PDF
    The structure of a river network may be seen as a discrete set of nested sub-networks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length-scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR

    The Dynamics of a Meandering River

    Full text link
    We present a statistical model of a meandering river on an alluvial plane which is motivated by the physical non-linear dynamics of the river channel migration and by describing heterogeneity of the terrain by noise. We study the dynamics analytically and numerically. The motion of the river channel is unstable and we show that by inclusion of the formation of ox-bow lakes, the system may be stabilised. We then calculate the steady state and show that it is in agreement with simulations and measurements of field data.Comment: Revtex, 12 pages, 2 postscript figure

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201

    Excitons and charged excitons in semiconductor quantum wells

    Full text link
    A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width.Comment: 9 pages, 11 figure

    Unified View of Scaling Laws for River Networks

    Full text link
    Scaling laws that describe the structure of river networks are shown to follow from three simple assumptions. These assumptions are: (1) river networks are structurally self-similar, (2) single channels are self-affine, and (3) overland flow into channels occurs over a characteristic distance (drainage density is uniform). We obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two of these exponents are independent. We further demonstrate that the two predominant descriptions of network structure (Tokunaga's law and Horton's laws) are equivalent in the case of landscapes with uniform drainage density. The results are tested with data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added

    Bloch Electrons in a Magnetic Field - Why Does Chaos Send Electrons the Hard Way?

    Full text link
    We find that a 2D periodic potential with different modulation amplitudes in x- and y-direction and a perpendicular magnetic field may lead to a transition to electron transport along the direction of stronger modulation and to localization in the direction of weaker modulation. In the experimentally accessible regime we relate this new quantum transport phenomenon to avoided band crossing due to classical chaos.Comment: 4 pages, 3 figures, minor modifications, PRL to appea
    corecore