1,096 research outputs found

    Microscopic calculations for solar nuclear reactions

    Full text link
    We have studied the 4He(3He,gamma)7Be, 3He(3He,2p)4He, and 7Be(p,gamma)8B reactions of the solar p-p chain, using microscopic cluster models. Among other results, we showed that the 6Li+p channel has a nontrivial effect on the 7Be-producing reaction, that the existence of a resonance in 6Be close to the 3He+3He threshold is rather unlikely, and that the correlations between some properties of 7Be/8B and the low-energy cross section of 7Be(p,gamma)8B might help one to constrain the value of the S_17(0) astrophysical S-factor.Comment: 3 pages with 1 figure. Proceedings of the Nuclei in the Cosmos Conference, Aarhus, Denmark, June 27-July 1, 2000. To be published in Nuclear Physics A. The postscript file and more information are available at http://matrix.elte.hu/~csoto and http://www.dfi.aau.dk/~langanke

    Towards Microscopic Ab Initio Calculations of Astrophysical S-Factors

    Full text link
    Low energy capture cross sections are calculated within a microscopic many-body approach using an effective Hamiltonian derived from the Argonne V18 potential. The dynamics is treated within Fermionic Molecular Dynamics (FMD) which uses a Gaussian wave-packet basis to represent the many-body states. A phase-shift equivalent effective interaction derived within the Unitary Correlation Operator Method (UCOM) that treats explicitly short-range central and tensor correlations is employed. As a first application the 3He(alpha,gamma)7Be reaction is presented. Within the FMD approach the microscopic many-body wave functions of the 3/2- and 1/2- bound states in 7Be as well as the many-body scattering states in the 1/2+, 3/2+ and 5/2+ channels are calculated as eigenstates of the same microscopic effective Hamiltonian. Finally the S-factor is calculated from E1 transition matrix elements between the many-body scattering and bound states. For 3He(alpha,gamma)7Be the S-factor agrees very well, both in absolute normalization and energy dependence, with the recent experimental data from the Weizmann, LUNA, Seattle and ERNA experiments. For the 3H(alpha,gamma)7Li reaction the calculated S-factor is about 15% above the data

    Weak reactions on 12C within the Continuum Random Phase Approximation with partial occupancies

    Get PDF
    We extend our previous studies of the neutrino-induced reactions on 12C and muon capture to include partial occupation of nuclear subshells in the framework of the continuum random phase approximation. We find, in contrast to the work by Auerbach et al., that a partial occupation of the p1/2 subshell reduces the inclusive cross sections only slightly. The extended model describes the muon capture rate and the 12C(nu_e,e-)12N cross section very well. The recently updated flux and the improved model bring the calculated 12C(nu_mu,mu^-)12N cross section (~ 17.5 10^{-40} cm^2) and the data (12.4 +/- 0.3(stat.) +/- 1.8(syst.) 10^{-40} cm^2) closer together, but does not remove the discrepancy fully.Comment: 12 pages, 2 figure

    Estimates of weak and electromagnetic nuclear decay signatures for neutrino reactions in Super-Kamiokande

    Get PDF
    We estimate possible delayed β decay signatures of the neutrino induced reactions on 16O in a two-step model: the primary neutrino (ν,l) process, where l is the lepton in the final state, is described within the random phase approximation, while the subsequent decay of the excited nuclear state in the final channel is treated within the statistical model. We calculate partial reaction cross sections leading to β unstable nuclei. We consider neutrino energies up to 500 MeV, relevant for atmospheric neutrino detection in Super-Kamiokande, and supernova neutrino spectra

    Muon capture on nuclei: random phase approximation evaluation versus data for 6 ≤\le Z ≤\le 94 nuclei

    Get PDF
    We use the random phase approximation to systematically describe the total muon capture rates on all nuclei where they have been measured. We reproduce the experimental values on these nuclei to better than 15% accuracy using the free nucleon weak form factors and residual interactions with a mild AA dependency. The isospin dependence and the effects associated with shell closures are fairly well reproduced as well. However, the calculated rates for the same residual interactions would be significantly lower than the data if the in-medium quenching of the axial-vector coupling constant is employed to other than the true Gamow-Teller amplitudes. Our calculation thus suggests that no quenching is needed in the description of semileptonic weak processes involving higher multipole transitions and momentum transfer ∼mμ\sim m_{\mu}, with obvious importance to analogous weak processes.Comment: RevTeX4 10 pages, 2 figures. Revised according to referee report. Table 1 expanded. Accepted for publication in PR
    • …
    corecore