68 research outputs found

    Neutrino Physics (theory)

    Full text link
    Nonzero neutrino masses are the first definitive need to extend the standard model. After reviewing the basic framework, I describe the status of some of the major issues, including tests of the basic framework of neutrino masses and mixings; the question of Majorana vs. Dirac; the spectrum, mixings, and number of neutrinos; models, with special emphasis on constraints from typical superstring constructions (which are not consistent with popular bottom-up assumptions); and other implications.Comment: 13 pages, 6 figures, invited plenary talk at ICHEP200

    Phenomenological Implications of Supersymmetric Family Non-universal U(1)-prime Models

    Full text link
    We construct a class of anomaly-free supersymmetric U(1)' models that are characterized by family non-universal U(1)' charges motivated from E_6 embeddings. The family non-universality arises from an interchange of the standard roles of the two SU(5) 5* representations within the 27 of E_6 for the third generation. We analyze U(1)' and electroweak symmetry breaking and present the particle mass spectrum. The models, which include additional Higgs multiplets and exotic quarks at the TeV scale, result in specific patterns of flavor-changing neutral currents in the b to s transitions that can accommodate the presently observed deviations inthis sector from the SM predictions.Comment: 25 pages, 3 figure

    Electroweak interactions

    Get PDF
    The theory and phenomenology of electroweak interactions and their role in establishing the standard model and searching for new physics will be described. Topics will include the structure of the standard model, spontaneous symmetry breaking, renormalization and radiative corrections, QED, the weak charged current, flavor changing effects, the weak neutral current and Z-pole physics. The implications of these for searches for new physics, including grand unification, supersymmetry, compositeness, dynamical symmetry-breaking, extended gauge structure and exotic particles will be developed

    Recent Developments in Precision Electroweak Physics

    Get PDF
    Developments in precision electroweak physics in the two years since the symposium are briefly summarized.Comment: Update on recent developments, prepared for the publication of the Proceedings of Alberto Sirlin Symposium, New York University, October 2000. 10 pages, 1 figur

    Massive Neutrinos and (Heterotic) String Theory

    Full text link
    String theories in principle address the origin and values of the quark and lepton masses. Perhaps the small values of neutrino masses could be explained generically in string theory even if it is more difficult to calculate individual values, or perhaps some string constructions could be favored by generating small neutrino masses. We examine this issue in the context of the well-known three-family standard-like Z_3 heterotic orbifolds, where the theory is well enough known to construct the corresponding operators allowed by string selection rules, and analyze the D- and F-flatness conditions. Surprisingly, we find that a simple see-saw mechanism does not arise. It is not clear whether this is a property of this construction, or of orbifolds more generally, or of string theory itself. Extended see-saw mechanisms may be allowed; more analysis will be needed to settle that issue. We briefly speculate on their form if allowed and on the possibility of alternatives, such as small Dirac masses and triplet see-saws. The smallness of neutrino masses may be a powerful probe of string constructions in general. We also find further evidence that there are only 20 inequivalent models in this class, which affects the counting of string vacua.Comment: 18 pages in RevTeX format. Single-column postscript version available at http://sage.hep.upenn.edu/~bnelson/singpre.p

    The Z-Z' Mass Hierarchy in a Supersymmetric Model with a Secluded U(1)'-Breaking Sector

    Full text link
    We consider the Z'/Z mass hierarchy in a supersymmetric model in which the U(1)' is broken in a secluded sector coupled to the ordinary sector only by gauge and possibly soft terms. A large mass hierarchy can be achieved while maintaining the normal sparticle spectra if there is a direction in which the tree level potential becomes flat when a particular Yukawa coupling vanishes. We describe the conditions needed for the desired breaking pattern, to avoid unwanted global symmetries, and for an acceptable effective mu parameter. The electroweak breaking is dominated by A terms rather than scalar masses, leading to tan beta ~ 1. The spectrum of the symmetry breaking sector is displayed. There is significant mixing between the MSSM particles and new standard model singlets, for both the Higgs scalars and the neutralinos. A larger Yukawa coupling for the effective mu parameter is allowed than in the NMSSM because of the U(1)' contribution to the running from a high scale. The upper bound on the tree-level mass of the lightest CP even Higgs doublet mass is about c x 174 GeV, where c is of order unity, but the actual mass eigenvalues are generally smaller because of singlet mixing.Comment: Latex, 12 Tables, 22 page

    Higgs Sector in Extensions of the MSSM

    Get PDF
    Extensions of the Minimal Supersymmetric Standard Model (MSSM) with additional singlet scalar fields solve the important mu-parameter fine tuning problem of the MSSM. We compute and compare the neutral Higgs boson mass spectra, including one-loop corrections, of the following MSSM extensions: Next-to-Minimal Supersymmetric Standard Model (NMSSM), the nearly-Minimal Supersymmetric Standard Model (nMSSM), and the U(1)'-extended Minimal Supersymmetric Standard Model (UMSSM) by performing scans over model parameters. We find that the Secluded U(1)'-extended Minimal Supersymmetric Standard Model (sMSSM) is identical to the nMSSM if three of the additional scalars decouple. The dominant part of the one-loop corrections are model-independent since the singlet field does not couple to MSSM particles other than the Higgs doublets. Thus, model-dependent parameters enter the masses only at tree-level. We apply constraints from LEP bounds on the Standard Model and MSSM Higgs boson masses and the MSSM chargino mass, the invisible Z decay width, and the Z-Z' mixing angle. Some extended models permit a Higgs boson with mass substantially below the SM LEP limit or above theoretical limits in the MSSM. Ways to differentiate the models via masses, couplings, decays and production of the Higgs bosons are discussed.Comment: 65 pages, 15 figures. Figure replaced and typos corrected. Version to appear in Phys. Rev.

    Indications for an Extra Neutral Gauge Boson in Electroweak Precision Data

    Get PDF
    A new analysis of the hadronic peak cross section at LEP 1 implies a small amount of missing invisible width in Z decays, while the effective weak charge in atomic parity violation has been determined recently to 0.6% accuracy, indicating a significantly negative S parameter. As a consequence of these two deviations, the data are described well if the presence of an additional Z' boson, such as predicted in Grand Unified Theories, is assumed. Moreover, the data are now rich enough to study an arbitrary extra Z' boson and to determine its couplings in a model independent way. An excellent best fit to the data is obtained in this case, suggesting the possibility of a family non-universal Z' with properties similar to ones predicted in a class of superstring theories.Comment: 5 pages of ReVTeX, 2 figure

    Phenomenology of A Three-Family Standard-like String Model

    Full text link
    We discuss the phenomenology of a three-family supersymmetric Standard-like Model derived from the orientifold construction, in which the ordinary chiral states are localized at the intersection of branes at angles. In addition to the Standard Model group, there are two additional U(1)' symmetries, one of which has family non-universal and therefore flavor changing couplings, and a quasi-hidden non-abelian sector which becomes strongly coupled above the electroweak scale. The perturbative spectrum contains a fourth family of exotic (SU(2)- singlet) quarks and leptons, in which, however, the left-chiral states have unphysical electric charges. It is argued that these decouple from the low energy spectrum due to hidden sector charge confinement, and that anomaly matching requires the physical left-chiral states to be composites. The model has multiple Higgs doublets and additional exotic states. The moduli-dependent predictions for the gauge couplings are discussed. The strong coupling agrees with experiment for reasonable moduli, but the electroweak couplings are too small.Comment: 22 pages, 4 figure

    TeV physics and the Planck scale

    Get PDF
    Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g., due to extended gauge symmetries, new vector-like supermultiplets with non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly comment on some of these possibilities, and discuss in more detail the class of extensions of the MSSM involving an additional standard model singlet field. The latter provides a solution to the ÎĽ\mu problem, and allows significant modifications of the MSSM in the Higgs and neutralino sectors, with important consequences for collider physics, cold dark matter, and electroweak baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic
    • …
    corecore