26 research outputs found

    Identification and evaluation of antivirals for Rift Valley fever virus

    Get PDF
    Doctor of PhilosophyDepartment of Diagnostic Medicine/PathobiologyWenjun MaRift Valley fever virus (RVFV) is an enveloped, negative-sense, ssRNA virus with a tripartite genome that causes morbidity and mortality in both livestock and humans. Although RVFV is mainly circulating in mainland Africa, this arthropod-borne virus is a potential threat to the other parts of the world. No fully licensed vaccines for human or animal use in the U.S., and effective antiviral drugs have not been identified. As virulent RVFV strains are only handled in biosafety level (BSL) 3 or higher level facilities in the U.S., few laboratories have access to RVFV which limits antiviral development. However, it is crucial to develop effective antivirals to protect public and animal health. Animal models that reproduce Rift Valley fever are vital to identifying and developing antiviral compounds. The currently available attenuated RVFV strain, MP12, provides a BSL-2 challenge model virus for preliminary investigations of RVFV prior to using the virulent RVFV strains. All strains of RVFV have a highly conserved genome, indicating that antivirals or vaccines effective against any RVFV strain will most likely be effective for all RVFV strains. Therefore, we hypothesize that the MP12 is a suitable model virus that can be used for identification and evaluation of effective RVF antivirals. The first objective of this project was to establish a mouse model susceptible to MP12 infection. Based on the literature, we selected and screened six different strains of mice to test their susceptibilities to MP12. We found the STAT-1 knockout mice are the most susceptible to MP12 infection based on clinical symptoms, mortality, viremia, virus replication, histopathological, and immunochemical analyses. Importantly, these mice displayed acute-onset hepatitis and delayed-onset encephalitis similar to severe cases of human RVFV infection. Our second objective was to identify potential antiviral drugs in vitro. We developed and employed a cell-based assay using the recombinant MP12 virus expressing Renilla luciferase to screen a library of 727 small compounds purchased from National Institutes of Health. Of the compounds, 23 were identified and further tested for their inhibitory activities on the recombinant MP12 virus expressing green fluorescent protein. Further plaque reduction assays confirmed that two compounds inhibited replication of parental RVFV MP12 strain with limited cytotoxic effects. The 50% inhibitory concentrations using an MP12 multiplicity of infection (MOI) of 2 were 211.4 µM and 139.5 µM, respectively. Our third objective was to evaluate these two candidates, 6-azauridine and mitoxantrone, in vivo using our mouse model. After one-hour post MP12 infection via an intranasal route, treatment was given intranasally twice daily. Mice treated with placebo and 6-azauridine displayed severe weight loss and reached the threshold for euthanasia with obvious neurological signs, while mice treated with ribavirin (a known antiviral drug) or mitoxantrone showed delayed onset of disease. This result indicates that the mitoxantrone can improve the outcome of RVFV infection in our mouse model. The underlying mechanism of mitoxantrone to inhibit RVFV replication remains to be investigated. Our studies build the foundation for identification and development of antivirals against RVFV in a BSL-2 environment

    Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    Get PDF
    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARSCoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn’t attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses

    Co-expression of Ubiquitin gene and capsid protein gene enhances the potency of DNA immunization of PCV2 in mice

    Get PDF
    <p>Abstract</p> <p>A recombinant plasmid that co-expressed ubiquitin and porcine circovirus type 2 (PCV2) virus capsid protein (Cap), denoted as pc-Ub-Cap, and a plasmid encoding PCV2 virus Cap alone, denoted as pc-Cap, were transfected into 293T cells. Indirect immunofluorescence (IIF) and confocal microscopy were performed to measure the cellular expression of Cap. Three groups of mice were then vaccinated once every three weeks for a total of three doses with pc-Ub-Cap, pc-Cap or the empty vector pCAGGS, followed by challenging all mice intraperitoneally with 0.5 mL 10<sup>6.5 </sup>TCID<sub>50</sub>/mL PCV2. To characterize the protective immune response against PCV2 infection in mice, assays of antibody titer (including different IgG isotypes), flow cytometric analysis (FCM), lymphocyte proliferation, cytokine production and viremia were evaluated. The results showed that pc-Ub-Cap and pc-Cap were efficiently expressed in 293T cells. However, pc-Ub-Cap-vaccinated animals had a significantly higher level of Cap-specific antibody and induced a stronger Th1 type cellular immune response than did pc-Cap-vaccinated animals, suggesting that ubiquitin conjugation improved both the cellular and humoral immune responses. Additionally, viral replication in blood was lower in the pc-Ub-Cap-vaccinated group than in the pc-Cap and empty vector groups, suggesting that the protective immunity induced by pc-Ub-Cap is superior to that induced by pc-Cap.</p

    Cisplatin protects mice from challenge of Cryptococcus neoformans

    No full text
    ABSTRACTThe Prp8 intein is one of the most widespread eukaryotic inteins, present in important pathogenic fungi, including Cryptococcus and Aspergillus species. Because the processed Prp8 carries out essential and non-redundant cellular functions, a Prp8 intein inhibitor is a mechanistically novel antifungal agent. In this report, we demonstrated that cisplatin, an FDA-approved cancer drug, significantly arrested growth of Prp8 intein-containing fungi C. neoformans and C. gattii, but only poorly inhibited growth of intein-free Candida species. These results suggest that cisplatin arrests fungal growth through specific inhibition of the Prp8 intein. Cisplatin was also found to significantly inhibit growth of C. neoformans in a mouse model. Our results further showed that cisplatin inhibited Prp8 intein splicing in vitro in a dose-dependent manner by direct binding to the Prp8 intein. Crystal structures of the apo- and cisplatin-bound Prp8 inteins revealed that two degenerate cisplatin molecules bind at the intein active site. Mutation of the splicing-site residues led to loss of cisplatin binding, as well as impairment of intein splicing. Finally, we found that overexpression of the Prp8 intein in cryptococcal species conferred cisplatin resistance. Overall, these results indicate that the Prp8 intein is a novel antifungal target worth further investigation

    Comparison of Pathogenicity and Transmissibility of Influenza B and D Viruses in Pigs

    No full text
    Influenza viruses are important pathogens causing respiratory disease in humans and animals. In contrast to influenza A virus (IAV) that can infect a wide range of animal species, other influenza viruses, including influenza B virus (IBV), influenza C virus (ICV), and influenza D virus (IDV) have a limited host range. Swine can be infected with all four different genera of influenza viruses. IAV infection of pigs causes the well-known swine influenza that poses significant threats to human and animal health. However, influenza virus infection of pigs with IBV, ICV, and IDV are not well-characterized. Herein, we compared pathogenicity of IBV and IDV using intratracheal and intranasal infection of pigs, which are IAV seropositive, and commingled naïve pigs with the infected animals to determine their transmissibility. Both viruses caused fever and some lung lesions, replicated in the lungs of infected pigs, but only IDV transmitted to the contact animals. Although IBV and IDV displayed differing levels of replication in the respiratory tract of infected pigs, no significant differences in pathogenicity of both viruses were observed. These results indicate that both IBV and IDV can replicate, and are pathogenic in pigs

    In vitro and in vivo characterization of erythrosin B and derivatives against Zika virus

    No full text
    Zika virus (ZIKV) causes significant human diseases without specific therapy. Previously we found erythrosin B, an FDA-approved food additive, inhibited viral NS2B−NS3 interactions, leading to inhibition of ZIKV infection in cell culture. In this study, we performed pharmacokinetic and in vivo studies to demonstrate the efficacy of erythrosin B against ZIKV in 3D mini-brain organoid and mouse models. Our results showed that erythrosin B is very effective in abolishing ZIKV replication in the 3D organoid model. Although pharmacokinetics studies indicated that erythrosin B had a low absorption profile, mice challenged by a lethal dose of ZIKV showed a significantly improved survival rate upon oral administration of erythrosin B, compared to vehicle control. Limited structure−activity relationship studies indicated that most analogs of erythrosin B with modifications on the xanthene ring led to loss or reduction of inhibitory activities towards viral NS2B−NS3 interactions, protease activity and antiviral efficacy. In contrast, introducing chlorine substitutions on the isobenzofuran ring led to slightly increased activities, suggesting that the isobenzofuran ring is well tolerated for modifications. Cytotoxicity studies indicated that all derivatives are nontoxic to human cells. Overall, our studies demonstrated erythrosin B is an effective antiviral against ZIKV both in vitro and in vivo.National Institute of Allergy and Infectious DiseasesOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore