7,661 research outputs found

    Subspace Methods for Data Attack on State Estimation: A Data Driven Approach

    Full text link
    Data attacks on state estimation modify part of system measurements such that the tempered measurements cause incorrect system state estimates. Attack techniques proposed in the literature often require detailed knowledge of system parameters. Such information is difficult to acquire in practice. The subspace methods presented in this paper, on the other hand, learn the system operating subspace from measurements and launch attacks accordingly. Conditions for the existence of an unobservable subspace attack are obtained under the full and partial measurement models. Using the estimated system subspace, two attack strategies are presented. The first strategy aims to affect the system state directly by hiding the attack vector in the system subspace. The second strategy misleads the bad data detection mechanism so that data not under attack are removed. Performance of these attacks are evaluated using the IEEE 14-bus network and the IEEE 118-bus network.Comment: 12 page

    Effective models for strong electronic correlations at graphene edges

    Full text link
    We describe a method for deriving effective low-energy theories of electronic interactions at graphene edges. Our method is applicable to general edges of honeycomb lattices (zigzag, chiral, and even disordered) as long as localized low-energy states (edge states) are present. The central characteristic of the effective theories is a dramatically reduced number of degrees of freedom. As a consequence, the solution of the effective theory by exact diagonalization is feasible for reasonably large ribbon sizes. The quality of the involved approximations is critically assessed by comparing the correlation functions obtained from the effective theory with numerically exact quantum Monte-Carlo calculations. We discuss effective theories of two levels: a relatively complicated fermionic edge state theory and a further reduced Heisenberg spin model. The latter theory paves the way to an efficient description of the magnetic features in long and structurally disordered graphene edges beyond the mean-field approximation.Comment: 13 pages, 9 figure

    Myxobolus aeglefini in Wittlingen (Merlangius merlangus)der Nordsee und der lrischen See

    Get PDF
    In June 1994 and 1995 stations in the North, Irish, Celtic Seas and the Channel were studied for the occurrence of Myxobolus aeglefini in whiting (Merlangius merlangus). The disease was visible externally as either white nodules of a few millimeters diameter in the upper mouth cavity, gill arches and the basis of pelvic fins and in severe cases also on the lower jaws or in the cornea and sclera of the eye. It was verified morphometrically in histological sections of infected eyes by size and shape of spores. Myxobolus aeglefini was present in low prevalences at two North Sea stations and high prevalences of up to 49 % in the Irish Sea (Solway Firth) during both cruises. Whiting between 23 and 55 cm were found to be infected. Neither length-age prevalences nor condition factors and gonado, spleen, liver somatic indices differed in diseased and healthy fishes

    The edentulous patient: attitudes toward oral health status

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75662/1/j.1754-4505.1983.tb01340.x.pd

    Absolute radiometric calibration of the EUNIS-06 170-205 A channel and calibration update for CDS/NIS

    Full text link
    The Extreme-Ultraviolet Normal-Incidence Spectrograph sounding-rocket payload was flown on 2006 April 12 (EUNIS-06), carrying two independent imaging spectrographs covering wave bands of 300-370 A in first order and 170-205 A in second order, respectively. The absolute radiometric response of the EUNIS-06 long-wavelength (LW) channel was directly measured in the same facility used to calibrate CDS prior to the SOHO launch. Because the absolute calibration of the short-wavelength (SW) channel could not be obtained from the same lab configuration, we here present a technique to derive it using a combination of solar LW spectra and density- and temperature-insensitive line intensity ratios. The first step in this procedure is to use the coordinated, cospatial EUNIS and SOHO/CDS spectra to carry out an intensity calibration update for the CDS NIS-1 waveband, which shows that its efficiency has decreased by a factor about 1.7 compared to that of the previously implemented calibration. Then, theoretical insensitive line ratios obtained from CHIANTI allow us to determine absolute intensities of emission lines within the EUNIS SW bandpass from those of cospatial CDS/NIS-1 spectra after the EUNIS LW calibration correction. A total of 12 ratios derived from intensities of 5 CDS and 12 SW emission lines from Fe Fe X - Fe XIII yield an instrumental response curve for the EUNIS-06 SW channel that matches well to a relative calibration which relied on combining measurements of individual optical components. Taking into account all potential sources of error, we estimate that the EUNIS-06 SW absolute calibration is accurate to about 20%.Comment: 11 pages, 10 figures, 4 tables. 2010, ApJ Suppl. In pres

    Rigid Origami Vertices: Conditions and Forcing Sets

    Full text link
    We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way
    • …
    corecore