605 research outputs found

    The trajectory of self

    Get PDF
    In a recent Opinion article, Sui and Humphreys [1] argue that experimental findings suggest self is ‘special’, in that self-reference serves a binding function within human cognitive economy. Contrasting their view with other functionalist positions, chiefly Dennett's [2], they deny that self is a convenient fiction and adduce findings to show that a ‘core self representation’ serves as an ‘integrative glue’ helping to bind distinct types of information as well as distinct stages of psycho- logical processing. In other words, where Dennett regards self as analogous to a center of gravity, a simplification posited by observers, Sui and Humphreys regard self as a function that modulates mental processes. In practice, however, the concept of ‘self’ they employ is not unlike Dennett's. We side with Sui and Humphreys in hold- ing that self-reference modulates mental processes: reference to self during a task can bind memory to source, increase perceptual integration, and link attention to decision making, among other things. What is more, these functions are not reducible to other factors such as semantic coding, familiarity, or reward [3]. But whereas Sui and Humphreys contribute important empirical detail, the binding functions they describe are compatible with Dennett's version of functionalism, which treats self as an artifact of social process

    Extrasolar planet science with the Antarctic planet interferometer

    Get PDF
    The primary limitation to ground based astronomy is the Earth's atmosphere. The atmosphere above the Antarctic plateau is different in many regards compared to the atmosphere at temperate sites. The extreme altitude, cold and low humidity offer a uniquely transparent atmosphere at many wavelengths. Studies at the South Pole have shown additionally that the turbulence properties of the night time polar atmosphere are fundamentally different to mid latitudes. Despite relatively strong ground layer turbulence, the lack of high altitude turbulence combined with low wind speeds presents favorable conditions for interferometry. The unique properties of the polar atmosphere can be exploited for Extrasolar Planet studies with differential astrometry, differential phase and nulling intereferometers. This paper combines the available data on the properties of the atmosphere at the South Pole and other Antarctic plateau sites for Extrasolar Planet science with interferometry

    Accountable-eHealth Systems: the Next Step Forward for Privacy

    Get PDF
    EHealth systems promise enviable benefits and capabilities for healthcare, yet the technologies that make these capabilities possible brings with them undesirable drawback such as information security related threats which need to be appropriately addressed. Lurking in these threats are patient privacy concerns. Resolving these privacy concerns have proven to be difficult since they often conflict with information requirements of healthcare providers. It is important to achieve a proper balance between these requirements. We believe that information accountability can achieve this balance. In this paper we introduce accountable-eHealth systems. We will discuss how our designed protocols can successfully address the aforementioned requirement. We will also compare characteristics of AeH systems with Australia’s PCEHR system and identify similarities and highlight the differences and the impact those differences would have to the eHealth domain

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Transnational seafarer communities

    Get PDF

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    Multi-Material Processing By Lens

    Get PDF
    During the past few years, solid freeform fabrication has evolved into direct fabrication of metallic components using computer aided design (CAD) solid models. [1-4] Laser Engineered Net Shaping (LENS™) is one such technique [5-7] being developed at Sandia to fabricate high strength, near net shape metallic components. In the past two years a variety of components have been fabricated using LENS™ for applications ranging from prototype parts to injection mold tooling. [8] To advance direct fabrication capabilities, a process must be able to accommodate a wide range ofmaterials, including alloys and composites. This is important for tailoring certain physical properties critical to component performance. Examples include graded deposition for matching coefficient ofthermal expansion between dissimilar materials, layered fabrication for novel mechanical properties, and new alloy design where elemental constituents and/or alloys are blended to create new materials. In this paper, we will discuss the development ofprecise powder feeding capabilities for the LENSTM process to fabricate graded or layered material parts. We also present preliminary results from chemical and microstructural analysis.Mechanical Engineerin
    corecore