87 research outputs found

    Bayesian Discovery of Multiple Bayesian Networks via Transfer Learning

    Full text link
    Bayesian network structure learning algorithms with limited data are being used in domains such as systems biology and neuroscience to gain insight into the underlying processes that produce observed data. Learning reliable networks from limited data is difficult, therefore transfer learning can improve the robustness of learned networks by leveraging data from related tasks. Existing transfer learning algorithms for Bayesian network structure learning give a single maximum a posteriori estimate of network models. Yet, many other models may be equally likely, and so a more informative result is provided by Bayesian structure discovery. Bayesian structure discovery algorithms estimate posterior probabilities of structural features, such as edges. We present transfer learning for Bayesian structure discovery which allows us to explore the shared and unique structural features among related tasks. Efficient computation requires that our transfer learning objective factors into local calculations, which we prove is given by a broad class of transfer biases. Theoretically, we show the efficiency of our approach. Empirically, we show that compared to single task learning, transfer learning is better able to positively identify true edges. We apply the method to whole-brain neuroimaging data.Comment: 10 page

    Filtering Techniques for Rapid User Classification

    Get PDF
    In the computer security task of anomaly detection, we wish to measure not only the classification accuracy of a detector but also the average time to detection. This quantity represents either the average time between false alarms (for a valid user) or the average time until a hostile user is detected. We examine the use of noise suppression filters as componants of a learning classification system for this domain. We empirically evalute the behaviors of a trailing window mean value filter and a trailing window median value filter in terms of both accuracy and time to detection. We find that the median filter is generally to be preferred for this domain

    Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    Get PDF
    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration

    Collaborative Clustering for Sensor Networks

    Get PDF
    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events, as well as faster responses such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if individual nodes can communicate directly with their neighbors. Previously, a method was developed by which machine learning classification algorithms could collaborate to achieve high performance autonomously (without requiring human intervention). This method worked for supervised learning algorithms, in which labeled data is used to train models. The learners collaborated by exchanging labels describing the data. The new advance enables clustering algorithms, which do not use labeled data, to also collaborate. This is achieved by defining a new language for collaboration that uses pair-wise constraints to encode useful information for other learners. These constraints specify that two items must, or cannot, be placed into the same cluster. Previous work has shown that clustering with these constraints (in isolation) already improves performance. In the problem formulation, each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. Each learner clusters its data and then selects a pair of items about which it is uncertain and uses them to query its neighbors. The resulting feedback (a must and cannot constraint from each neighbor) is combined by the learner into a consensus constraint, and it then reclusters its data while incorporating the new constraint. A strategy was also proposed for cleaning the resulting constraint sets, which may contain conflicting constraints; this improves performance significantly. This approach has been applied to collaborative clustering of seismic and infrasonic data collected by the Mount Erebus Volcano Observatory in Antarctica. Previous approaches to distributed clustering cannot readily be applied in a sensor network setting, because they assume that each node has the same view of the data set. A view is the set of features used to represent each object. When a single data set is partitioned across several computational nodes, distributed clustering works; all objects have the same view. But when the data is collected from different locations, using different sensors, a more flexible approach is needed. This approach instead operates in situations where the data collected at each node has a different view (e.g., seismic vs. infrasonic sensors), but they observe the same events. This enables them to exchange information about the likely cluster membership relations between objects, even if they do not use the same features to represent the objects

    A computational study of off-target effects of RNA interference

    Get PDF
    RNA interference (RNAi) is an intracellular mechanism for post-transcriptional gene silencing that is frequently used to study gene function. RNAi is initiated by short interfering RNA (siRNA) of ∼21 nt in length, either generated from the double-stranded RNA (dsRNA) by using the enzyme Dicer or introduced experimentally. Following association with an RNAi silencing complex, siRNA targets mRNA transcripts that have sequence identity for destruction. A phenotype resulting from this knockdown of expression may inform about the function of the targeted gene. However, ‘off-target effects’ compromise the specificity of RNAi if sequence identity between siRNA and random mRNA transcripts causes RNAi to knockdown expression of non-targeted genes. The complete off-target effects must be investigated systematically on each gene in a genome by adjusting a group of parameters, which is too expensive to conduct experimentally and motivates a study in silico. This computational study examined the potential for off-target effects of RNAi, employing the genome and transcriptome sequence data of Homo sapiens, Caenorhabditis elegans and Schizosaccharomyces pombe. The chance for RNAi off-target effects proved considerable, ranging from 5 to 80% for each of the organisms, when using as parameter the exact identity between any possible siRNA sequences (arbitrary length ranging from 17 to 28 nt) derived from a dsRNA (range 100–400 nt) representing the coding sequences of target genes and all other siRNAs within the genome. Remarkably, high-sequence specificity and low probability for off-target reactivity were optimally balanced for siRNA of 21 nt, the length observed mostly in vivo. The chance for off-target RNAi increased (although not always significantly) with greater length of the initial dsRNA sequence, inclusion into the analysis of available untranslated region sequences and allowing for mismatches between siRNA and target sequences. siRNA sequences from within 100 nt of the 5′ termini of coding sequences had low chances for off-target reactivity. This may be owing to coding constraints for signal peptide-encoding regions of genes relative to regions that encode for mature proteins. Off-target distribution varied along the chromosomes of C.elegans, apparently owing to the use of more unique sequences in gene-dense regions. Finally, biological and thermodynamical descriptors of effective siRNA reduced the number of potential siRNAs compared with those identified by sequence identity alone, but off-target RNAi remained likely, with an off-target error rate of ∼10%. These results also suggest a direction for future in vivo studies that could both help in calibrating true off-target rates in living organisms and also in contributing evidence toward the debate of whether siRNA efficacy is correlated with, or independent of, the target molecule. In summary, off-target effects present a real but not prohibitive concern that should be considered for RNAi experiments
    • …
    corecore