21,473 research outputs found

    Semimetallic features in quantum transport through a gate-defined point contact in bilayer graphene

    Full text link
    We demonstrate that, at the onset of conduction, an electrostatically defined quantum wire in bilayer graphene (BLG) with an interlayer asymmetry gap may act as a 1D semimetal, due to the multiple minivalley dispersion of its lowest subband. Formation of a non-monotonic subband coincides with a near-degeneracy between the bottom edges of the lowest two subbands in the wire spectrum, suggesting an 8e2/h8e^2/h step at the conduction threshold, and the semimetallic behaviour of the lowest subband in the wire would be manifest as resonance transmission peaks on an 8e2/h8e^2/h conductance plateau.Comment: 9 pages, 8 figures (including appendices

    Twist-controlled Resonant Tunnelling between Monolayer and Bilayer Graphene

    Full text link
    We investigate the current-voltage characteristics of a field-effect tunnelling transistor comprised of both monolayer and bilayer graphene with well-aligned crystallographic axes, separated by three layers of hexagonal boron nitride. Using a self-consistent description of the device's electrostatic configuration we relate the current to three distinct tunable voltages across the system and hence produce a two-dimensional map of the I-V characteristics in the low energy regime. We show that the use of gates either side of the heterostructure offers a fine degree of control over the device's rich array of characteristics, as does varying the twist between the graphene electrodes.Comment: 5 pages including references and 3 figure

    Database queries and constraints via lifting problems

    Full text link
    Previous work has demonstrated that categories are useful and expressive models for databases. In the present paper we build on that model, showing that certain queries and constraints correspond to lifting problems, as found in modern approaches to algebraic topology. In our formulation, each so-called SPARQL graph pattern query corresponds to a category-theoretic lifting problem, whereby the set of solutions to the query is precisely the set of lifts. We interpret constraints within the same formalism and then investigate some basic properties of queries and constraints. In particular, to any database π\pi we can associate a certain derived database \Qry(\pi) of queries on π\pi. As an application, we explain how giving users access to certain parts of \Qry(\pi), rather than direct access to π\pi, improves ones ability to manage the impact of schema evolution

    EmBench: Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices

    Full text link
    In recent years, advances in deep learning have resulted in unprecedented leaps in diverse tasks spanning from speech and object recognition to context awareness and health monitoring. As a result, an increasing number of AI-enabled applications are being developed targeting ubiquitous and mobile devices. While deep neural networks (DNNs) are getting bigger and more complex, they also impose a heavy computational and energy burden on the host devices, which has led to the integration of various specialized processors in commodity devices. Given the broad range of competing DNN architectures and the heterogeneity of the target hardware, there is an emerging need to understand the compatibility between DNN-platform pairs and the expected performance benefits on each platform. This work attempts to demystify this landscape by systematically evaluating a collection of state-of-the-art DNNs on a wide variety of commodity devices. In this respect, we identify potential bottlenecks in each architecture and provide important guidelines that can assist the community in the co-design of more efficient DNNs and accelerators.Comment: Accepted at MobiSys 2019: 3rd International Workshop on Embedded and Mobile Deep Learning (EMDL), 201

    On Fusion Rules in Logarithmic Conformal Field Theories

    Get PDF
    We find the fusion rules for the c_{p,1} series of logarithmic conformal field theories. This completes our attempts to generalize the concept of rationality for conformal field theories to the logarithmic case. A novelty is the appearance of negative fusion coefficients which can be understood in terms of exceptional quantum group representations. The effective fusion rules (i.e. without signs and multiplicities) resemble the BPZ fusion rules for the virtual minimal models with conformal grid given via c = c_{3p,3}. This leads to the conjecture that (almost) all minimal models with c = c_{p,q}, gcd(p,q) > 1, belong to the class of rational logarithmic conformal field theories.Comment: 14 pages, LaTeX (or better LaTeX2e), no figures, also available at http://www.sns.ias.edu/~flohr/, some corrections and clarification

    Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    Get PDF
    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of beyond graphene compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functional for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally

    Direct radiative capture of p-wave neutrons

    Get PDF
    The neutron direct radiative capture (DRC) process is investigated, highlighting the role of incident p-wave neutrons. A set of calculations is shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV, a crucial region for astrophysics. The cross section for neutron capture leading to loosely bound s, p and d orbits of 13-C is well reproduced by the DRC model demonstrating the feasibility of using this reaction channel to study the properties of nuclear wave functions on and outside the nuclear surface. A sensitivity analysis of the results on the neutron-nucleus interaction is performed for incident s- as well as p-waves. It turned out that the DRC cross section for p-wave neutrons is insensitive to this interaction, contrary to the case of incident s-wave neutrons. PACS number(s): 25.40Lw,21.10Gv,23.40.HcComment: 16 pages, REVTeX file, PostScript file, .dvi fil

    Rigidification of quasi-categories

    Full text link
    We give a new construction for rigidifying a quasi-category into a simplicial category, and prove that it is weakly equivalent to the rigidification given by Lurie. Our construction comes from the use of necklaces, which are simplicial sets obtained by stringing simplices together. As an application of these methods, we use our model to reprove some basic facts from Lurie's "Higher Topos Theory" regarding the rigidification process.Comment: 26 page

    Magnetized black holes and black rings in the higher dimensional dilaton gravity

    Full text link
    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes and five dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the DD-dimensional magnetized Schwarzschild-Tangherlini black holes.Comment: LaTeX, 23 pages; v2 references and comments added, some typos corrected;v3 minor change
    corecore