107 research outputs found

    Impact of the 2010 Deepwater Horizon oil spill on population size and genetic structure of horse flies in Louisiana marshes

    Get PDF
    The greenhead horse fly, Tabanus nigrovittatus Macquart, is frequently found in coastal marshes of the Eastern United States. The greenhead horse fly larvae are top predators in the marsh and thus vulnerable to changes in the environment, and the adults potentially are attracted to polarized surfaces like oil. Therefore, horse fly populations could serve as bioindicators of marsh health and toxic effects of oil intrusion. In this study, we describe the impact of the April 2010 Deep Water Horizon oil spill in the Gulf of Mexico on tabanid population abundance and genetics as well as mating structure. Horse fly populations were sampled biweekly from oiled and unaffected locations immediately after the oil spill in June 2010 until October 2011. Horse fly abundance estimates showed severe crashes of tabanid populations in oiled areas. Microsatellite genotyping of six pristine and seven oiled populations at ten polymorphic loci detected genetic bottlenecks in six of the oiled populations in association with fewer breeding parents, reduced effective population size, lower number of family clusters and fewer migrants among populations. This is the first study assessing the impact of oil contamination at the level of a top arthropod predator of the invertebrate community in salt marshes

    Genetically engineered yeast expressing a lytic peptide from bee venom (Melittin) kills symbiotic protozoa in the gut of Formosan subterranean termites

    Get PDF
    Β© 2016 Husseneder et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival

    Development of microsatellites for genetic analyses and population assignment of the cat flea (Siphonaptera: Pulicidae)

    Get PDF
    Cat fleas, Ctenocephalides felis (Bouch) (Siphonaptera: Pulicidae), are common ectoparasites of companion animals that negatively impact their hosts directly by causing dermatitis and blood loss during feeding and indirectly through the potential transmission of disease causing agents. We isolated and characterized seven novel microsatellite loci from a partial genomic library of the cat flea enriched for di-, tri-, and tetranucleotide repeats. We screened these loci in cat fleas from two laboratory colonies and one wild-caught population collected at a temporary animal shelter (Parker coliseum) in Baton Rouge, LA. Six loci were polymorphic, with two to 15 alleles per locus and an average observed heterozygosity of 0.21 across populations. Although the two laboratory cat flea colonies were isolated from each other for many years, they did not significantly differ in their genotypic composition. The cat flea population from Parker coliseum was genetically different from the laboratory colonies, but also showed high degrees of inbreeding. Multilocus genotypes of the polymorphic loci were sufficient to assign over 85% of cat fleas to their population of origin. Genetic markers for flea population identity will allow further studies to examine the origins and movement of cat fleas with important genetic traits such as insecticide resistance or pathogen susceptibility. The use of microsatellites also could determine if there are host-specific strains of cat fleas and add insight into the development of the different subspecies of C. felis. Β© 2010 Entomological Society of America

    Comparative microbiota of Rickettsia felis-uninfected and -infected colonized cat fleas, Ctenocephalides felis

    Get PDF
    Fleas serve as arthropod vectors for several emerging and re-emerging infectious disease causing agents including, Rickettsia felis. Although the prevalence of R. felis infection in colonies of fleas has been examined, the influence of the R. felis infection on flea microbiota has not been investigated. We identified three colonies of cat fleas, Ctenocephalides felis, with varying prevalence of R. felis infection (Louisiana State University (LSU), 93.8; Professional Laboratory and Research Services Inc. (PLRS), 16.4; Elward II (EL), 0) and subsequently utilized polymerase chain reaction amplification, restriction fragment length polymorphism analysis and sequencing of the 1.4-kb portions of 16S rRNA genes to examine the diversity of bacteria in the flea populations. A total of 17 different bacterial 16S rRNA gene sequences were identified among the C. felis colonies. The prevalence of two Wolbachia species that were identified in each flea colony differed between colonies and R. felis-uninfected and -infected fleas. Species richness was unchanged among the R. felis-uninfected (LSU, PLRS and EL colonies) and -infected (LSU and PLRS colonies) fleas; however, between R. felis-uninfected and -infected fleas within both the LSU and PLRS colonies, R. felis-uninfected fleas have greater species richness. Diversity indices did not identify a difference in diversity between any of the flea samples. The interaction of endosymbionts within arthropods can widely impact the dissemination of vertically transmitted pathogenic bacteria; and the reciprocal may be true. These results suggest that carriage of R. felis has an impact on the richness of flea microbiota. Β© 2007 International Society for Microbial Ecology All rights reserved

    Prevalence and Infection Load Dynamics of Rickettsia felis in Actively Feeding Cat Fleas

    Get PDF
    Background: Rickettsia felis is a flea-associated rickettsial pathogen recurrently identified in both colonized and wild-caught cat fleas, Ctenocephalides felis. We hypothesized that within colonized fleas, the intimate relationship between R. felis and C. felis allows for the coordination of rickettsial replication and metabolically active periods during flea bloodmeal acquisition and oogenesis. Methodology/Principal Findings: A quantitative real-time PCR assay was developed to quantify R. felis in actively feeding R. felis-infected fleas. In three separate trials, fleas were allowed to feed on cats, and a mean of 3.9610 6 R. felis 17-kDa gene copies was detected for each flea. A distinct R. felis infection pattern was not observed in fleas during nine consecutive days of bloodfeeding. However, an inverse correlation between the prevalence of R. felis-infection, which ranged from 96 % in Trial 1 to 35 % in Trial 3, and the R. felis-infection load in individual fleas was identified. Expression of R. felis-infection load as a ratio of R. felis/C. felis genes confirmed that fleas in Trial 3 had significantly greater rickettsial loads than those in Trial 1. Conclusion/Significance: Examining rickettsial infection dynamics in the flea vector will further elucidate the intimate relationship between R. felis and C. felis, and facilitate a more accurate understanding of the ecology and epidemiology of R. felis transmission in nature

    Isolation of a Rickettsial Pathogen from a Non-Hematophagous Arthropod

    Get PDF
    Rickettsial diversity is intriguing in that some species are transmissible to vertebrates, while others appear exclusive to invertebrate hosts. Of particular interest is Rickettsia felis, identifiable in both stored product insect pests and hematophagous disease vectors. To understand rickettsial survival tactics in, and probable movement between, both insect systems will explicate the determinants of rickettsial pathogenicity. Towards this objective, a population of Liposcelis bostrychophila, common booklice, was successfully used for rickettsial isolation in ISE6 (tick-derived cells). Rickettsiae were also observed in L. bostrychophila by electron microscopy and in paraffin sections of booklice by immunofluorescence assay using anti-R. felis polyclonal antibody. The isolate, designated R. felis strain LSU-Lb, resembles typical rickettsiae when examined by microscopy. Sequence analysis of portions of the Rickettsia specific 17-kDa antigen gene, citrate synthase (gltA) gene, rickettsial outer membrane protein A (ompA) gene, and the presence of the R. felis plasmid in the cell culture isolate confirmed the isolate as R. felis. Variable nucleotide sequences from the isolate were obtained for R. felis-specific pRF-associated putative tldD/pmbA. Expression of rickettsial outer membrane protein B (OmpB) was verified in R. felis (LSU-Lb) using a monoclonal antibody. Additionally, a quantitative real-time PCR assay was used to identify a significantly greater median rickettsial load in the booklice, compared to cat flea hosts. With the potential to manipulate arthropod host biology and infect vertebrate hosts, the dual nature of R. felis provides an excellent model for the study of rickettsial pathogenesis and transmission. In addition, this study is the first isolation of a rickettsial pathogen from a non-hematophagous arthropod

    Infection and Seroconversion of Cats Exposed to Cat Fleas (Ctenocephalides felis BouchΓ©) Infected Rickettsia felis

    No full text
    Cats with no prior exposure to cat fleas were exposed to fleas infected with Rickettsia felis and monitored monthly for seroconversion via an indirect florescent assay (IFA). Each of 12 cats continually infested with fleas, seroconverted by four months post-exposure. Three of six cats fed on by 50 fleas for 15 minutes once per week also seroconverted by month four. Rickettsia felis DNA was detected by PCR in the blood of five of the 16 cats
    • …
    corecore