14,532 research outputs found

    Dry matter yields and quality of organic lupin/cereal mixtures for wholecrop forage

    Get PDF
    In view of climate change predictions and the general desirability of increasing the amount of home grown protein, a case exists for the investigation of lupins and lupin/cereal bicrop combinations as wholecrop forage on organic farms. A replicated randomised block trial is described which took place at the Royal Agricultural College, Cirencester, in 2005. This involved spring sown blue, white and yellow lupins, millet, wheat and triticale and lupin/cereal bi-crops. Data for dry matter yields for wholecrop silage, crude protein, MAD fi bre content and estimated ME, are presented for a single harvest. It is concluded that white lupins and white lupin bi-crops with spring wheat or triticale offer the best prospects for a viable wholecrop forage crop in an organic situation

    Discovering predictive variables when evolving cognitive models

    Get PDF
    A non-dominated sorting genetic algorithm is used to evolve models of learning from different theories for multiple tasks. Correlation analysis is performed to identify parameters which affect performance on specific tasks; these are the predictive variables. Mutation is biased so that changes to parameter values tend to preserve values within the population's current range. Experimental results show that optimal models are evolved, and also that uncovering predictive variables is beneficial in improving the rate of convergence

    Mitonuclear Interactions Produce Diverging Responses to Mild Stress in Drosophila Larvae

    Get PDF
    Mitochondrial function depends on direct interactions between respiratory proteins encoded by genes in two genomes, mitochondrial and nuclear, which evolve in very different ways. Serious incompatibilities between these genomes can have severe effects on development, fitness and viability. The effect of subtle mitonuclear mismatches has received less attention, especially when subject to mild physiological stress. Here, we investigate how two distinct physiological stresses, metabolic stress (high-protein diet) and redox stress [the glutathione precursor N-acetyl cysteine (NAC)], affect development time, egg-to-adult viability, and the mitochondrial physiology of Drosophila larvae with an isogenic nuclear background set against three mitochondrial DNA (mtDNA) haplotypes: one coevolved (WT) and two slightly mismatched (COX and BAR). Larvae fed the high-protein diet developed faster and had greater viability in all haplotypes. The opposite was true of NAC-fed flies, especially those with the COX haplotype. Unexpectedly, the slightly mismatched BAR larvae developed fastest and were the most viable on both treatments, as well as control diets. These changes in larval development were linked to a shift to complex I-driven mitochondrial respiration in all haplotypes on the high-protein diet. In contrast, NAC increased respiration in COX larvae but drove a shift toward oxidation of proline and succinate. The flux of reactive oxygen species was increased in COX larvae treated with NAC and was associated with an increase in mtDNA copy number. Our results support the notion that subtle mitonuclear mismatches can lead to diverging responses to mild physiological stress, undermining fitness in some cases, but surprisingly improving outcomes in other ostensibly mismatched fly lines

    FRuDA: Framework for Distributed Adversarial Domain Adaptation

    Get PDF
    Breakthroughs in unsupervised domain adaptation (uDA) can help in adapting models from a label-rich source domain to unlabeled target domains. Despite these advancements, there is a lack of research on how uDA algorithms, particularly those based on adversarial learning, can work in distributed settings. In real-world applications, target domains are often distributed across thousands of devices, and existing adversarial uDA algorithms -- which are centralized in nature -- cannot be applied in these settings. To solve this important problem, we introduce FruDA: an end-to-end framework for distributed adversarial uDA. Through a careful analysis of the uDA literature, we identify the design goals for a distributed uDA system and propose two novel algorithms to increase adaptation accuracy and training efficiency of adversarial uDA in distributed settings. Our evaluation of FruDA with five image and speech datasets shows that it can boost target domain accuracy by up to 50% and improve the training efficiency of adversarial uDA by at least 11 times

    Unsupervised domain adaptation for robust sensory systems

    Get PDF
    Despite significant advances in the performance of sensory inference models, their poor robustness to changing environmental conditions and hardware remains a major hurdle for widespread adoption. In this paper, we introduce the concept of unsupervised domain adaptation which is a technique to adapt sensory inference models to new domains only using unlabeled data from the target domain. We present two case-studies to motivate the problem and highlight some of our recent work in this space. Finally, we discuss the core challenges in this space that can trigger further ubicomp research on this topic

    Milk Production Potential of Different Dairy Pasture Types in Southern Australia

    Get PDF
    The growth rate of traditional perennial ryegrass-based pastures commonly fails to meet herd feed requirements through winter and summer in non-irrigated dairy systems in southern Australia. Alternative pasture species can improve seasonal feed supply in this region (Tharmaraj & Chapman, 2005). However, the feeding value and milk production of these pastures must at least match perennial ryegrass if they are to be adopted successfully on dairy farms. This paper reports results of a comparison of the milk production potential of pasture types similar to those investigated by Tharmaraj & Chapman (2005) for their agronomic performance

    Widths of Isobaric Analog Resonances: a microscopic approach

    Get PDF
    A self-consistent particle-phonon coupling model is used to investigate the properties of the isobaric analog resonance in 208^{208}Bi. It is shown that quantitative agreement with experimental data for the energy and the width can be obtained if the effects of isospin-breaking nuclear forces are included, in addition to the Coulomb force effects. A connection between microscopic model predictions and doorway state approaches which make use of the isovector monopole resonance, is established via a phenomenological ansatz for the optical potential.Comment: 18 pages, 1 figure. To appear on Phys. Rev. C (tentatively scheduled for June 1998
    • …
    corecore