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ABSTRACT
Despite significant advances in the performance of sensory
inference models, their poor robustness to changing environ-
mental conditions and hardware remains a major hurdle for
widespread adoption. In this paper, we introduce the concept
of unsupervised domain adaptation which is a technique to
adapt sensory inference models to new domains only us-
ing unlabeled data from the target domain. We present two
case-studies to motivate the problem and highlight some of
our recent work in this space. Finally, we discuss the core
challenges in this space that can trigger further ubicomp
research on this topic.
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1 INTRODUCTION
Driven by the advancements in computational models that
infer user context from sensor data, a number of consumer
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devices and mobile sensing applications have been devel-
oped for various sensing modalities. For example, commer-
cial smart devices have been launched for monitoring a users
sleep [6], physical activity [2], dietary actions [4], stress [5],
daily activities [2], ambient environments [1, 3], and emo-
tional well-being [5]. In addition to these dedicated consumer
devices, a range of mobile sensing applications have been
proposed to detect context and activities such as sleep [9], ex-
ercise [11], facial expressions [10], transportation mode [8]
and emotions [15].

The training of sensory inference models follows a super-
vised learning approach wherein a labeled training dataset
is used to model the relationship between target classes
and the sensor data. A fundamental assumption that drives
the performance of supervised learning algorithms is that
the data distribution remains the same during training and
testing stages. If this assumption is violated, the accuracy
of supervised classifiers is likely to degrade. Indeed, prior
research[7, 8, 16] has shown that differences in sensor de-
vices and operating conditions can introduce unexpected
variability in the sensor data. These real-world diversities
lead to a discrepancy (or shift) between the training and test
data distributions, a phenomenon known as domain shift
in machine learning. Therefore, if a classifier is trained on
data collected from one domain (e.g., device A) and tested
on a different unrelated domain (device B), it is likely to per-
form poorly. An easy solution to this problem is to train a
model separately for each domain (e.g., a model per device),
however this requires collecting large amounts of labeled
training data for each domain, which is both expensive and
time-consuming. Ideally, we desire a solution which can gen-
eralize a sensor classifier to a new domain using zero or
minimal amount of labeled data.
To this end, unsupervised domain adaptation (UDA) has

emerged as a promising technique to adapt inference models
across domains using only unlabeled data from the target
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domain. At a high-level, the idea behind UDA is as follows:
given a pre-trained classifier for a source domain and an
unlabeled dataset from a target domain, how can we adapt
the weights of the source model such that it shows better
performance in the target domain.
In this paper, we briefly present two real-world sensing

scenarios where domain shift caused by operating conditions
is prevalent. We then present our recent work on designing
and applying unsupervised domain adaptation algorithms to
improve the inference accuracy in these scenarios. Finally,
we identify the core challenges and open research questions
in this space which could pave the way for future research.

2 SCENARIOS
Weproceed to discuss two examples of domain shift inmobile
sensing. In the first, we look at how audio sensing models
cope with perturbations in the audio signal caused by the
change of microphone hardware. In the second, we look at
the variation caused by different body placements of inertial
sensors and how they impact the accuracy of human activity
recognition (HAR) models.

Microphone Variability in Speech Models
Speech inference models, once trained, are deployed on nu-
merous mobile and wearable devices, many of which are
not known while the models are trained and could come
from different hardware manufacturers. This is a challeng-
ing scenario because different manufacturers use different
hardware components (i.e., microphones) and may also have
different software pipelines which process the raw audio
signal before exposing them to user applications. Therefore,
inference models need to be robust against these forms of
microphone heterogeneity expected in the wild.
In our previous work, we quantified the accuracy loss

caused by microphone heterogeneity in mobile and embed-
ded microphones[12, 13] in the context of a keyword detec-
tion model. We recorded a large spoken keyword dataset si-
multaneously on three embedded microphones (namely Ma-
trix Voice, ReSpeaker, PlugUSB) and trained microphone spe-
cific CNN models for performing keyword detection. Once
the models were trained, they were deployed on test micro-
phones different from the training microphones. As shown
in Figure 1, we observe that there is a significant drop (red
bars) in inference accuracy when there is a mismatch be-
tween training and test microphones. For example, when
the model trained on Matrix Voice is deployed on ReSpeaker
and PlugUSB microphones, there is an absolute accuracy
drop of 12.4% and 6.7% respectively when compared with
the accuracy upper bound (78.8%).
We propose a CycleGAN-based domain adaptation tech-

nique, named Mic2Mic [12], which uses unlabeled and un-
paired data from the two microphones to learn a mapping

or domain translation function between them. Once trained,
this translation function is then used as a component in
the audio inference pipeline to reduce the domain shift be-
tween microphones. Our results show that Mic2Mic is able
to recover up to 87% of the lost accuracy in the best-case sce-
nario and outperforms a number of calibration and speech
enhancement (SE) baselines.

Body Position Variability of Inertial Sensors
Due to the various form-factors and individual wearing pref-
erences, mobile and wearable devices can be worn or carried
by users in diverse ways, for example, a smartphone can
be carried in pocket or held in hand. This wearing diver-
sity poses a major challenge for human activity recognition
(HAR) models in that the models need to be robust against
the significant variabilities in motion data obtained from the
diverse body positions. However as shown in Figure 2a, the
data distribution across body positions show significant di-
vergence, thereby causing the accuracy of a classifier trained
on the source body position to degrade in the target domain.
Figure 2b shows that this accuracy loss can be as high as
80.7% when the classifier is trained on data collected from
thigh and tested on motion data from forearm.

In our ongoing work, we are designing domain adaptation
techniques which align the feature spaces of different body
positions by learning features whichminimise a distancemet-
ric between the distributions. The distance are measured us-
ing integral probability metrics, such as the maximum mean
discrepancy, or via coupling metrics such as the Wasserstein
distance. Once a suitable alignment of feature spaces is done,
using only unlabeled data, we can expect that a classifier
trained on one body position will generalize more effectively
to a new body position.

3 OUTLOOK
Our past and ongoing work shows that unsupervised domain
adaptation carries significant promise for improving the ro-
bustness of sensory inference models. In this section, we
provide a discussion on the research challenges involved in
scaling, evaluating and generalizability of the domain adap-
tation techniques, and identify potential research directions
in this space.

Extending UDA to Multimodal Sensing
Our current experiments are focused on applying UDA to
inference models built using a single modality (e.g., audio
or motion). However as multimodal sensing becomes more
prominent, it is imperative that we study approaches of ex-
tending UDA to them. Indeed, a naive approach is to perform
UDA on eachmodality separately and then fuse their features
into the model, however there is also scope for performing
UDA on the joint distribution of multiple modalities.
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Figure 1: Accuracy of the Keyword Detection model under different scenarios of microphone variability. The numbers on the
bars denote the percentage of lost accuracy recovered using Mic2Mic.

(a) Accelerometer traces collected from a trouser pocket, a chest pocket and
an arm band for the same physical activity. Variations across body positions
are clear and significant.
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(b) The F1 score of the classification
model trained on thigh when tested
on other body positions.

Figure 2: The wearing variability is typical in many wearable devices. Such variability result in huge variance in collected
accelerometer signals (Figure 2a). Human activity recognition models that do not consider wearing variability may suffer
from significant accuracy drops (Figure 2b).

Evaluation Metrics of Domain Adaptation
Depending on the application, the following three desiderata
are often required and used as evaluation criteria.
• Adaptability refers to the performance associated with
adapting models from one domain to another. This is an
important metric when models need to be adapted be-
tween static domains – for instance, if a source model

was trained on wrist-worn sensors and subsequently need
to be deployed for chest-worn sensors, we desire a high
performance in wrist−→chest adaptation. More specifically,
Adaptability can be computed based on the test accuracy
of the adapted model in the target domain. The higher
the test accuracy in the target domain, the higher the
adaptability of the domain adaptation algorithm.
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• Persistencemeasures the performance of an inferencemodel
on the original source domain after it undergoes the do-
main adaptation process. It is particularly important be-
cause we would like the model to retain its performance
in the source domain along with becoming better at doing
inferences in the target domain.

• Generalizability measures how well a model performs on
data domains for which it was neither trained nor adapted.
This property is critical because in real-world scenarios,
domains such as wearing positions do not remain static –
i.e., users can wear their device in unexpected positions
and orientations. Therefore, a technique which produces
more generalizable models is desirable. Moreover, gener-
alizability may obviate the need for performing domain
adaptation on each new domain when scaling to a very
large number of domain.
An ideal domain adaptation method satisfying all three
properties would be flexible and depending on application,
may allow the simplest system design.

Optimizing Training and Inference Pipeline for UDA
A particularly interesting area of research is to make the
training and inference pipelines for UDA better aware of user
preferences and resource requirements on mobile devices.
For example, in our current implementation, the domain
adaptation is performed on the cloud and requires end-users
to upload their private sensor data to the cloud. Future re-
search should look at privacy-preserving approaches which
can perform domain adaptation using no or minimal raw
sensor data from the users. Similarly, the adapted models
need to be optimized for inference on mobile and wearable
devices so that there is minimal latency overhead caused by
applying domain adaptation in the inference pipeline.

Label Space Mismatch
Existing domain adaptation techniques assume that label/class
spaces across the source and target domains are identical,
even though their underlying data distributions might be
different. In the presence of domain shift it is challenging
to determine a source domain which has identical labels or
classes to the intended target domain. As such, it is likely that
there are outlier classes either in the source or target domain.
The presence of such outlier classes in the adaptation task
can lead to negative transfer [14], a phenomenon wherein
the outliers even degrade the transfer of knowledge between
shared classes. Therefore, a major challenge for making do-
main adaptation practical in ubiquitous systems is to design
algorithms which can work under label space mismatch.

When to Apply Domain Adaptation
Even though domain adaptation has significant potential in
improving the performance of sensory models, it is not a
silver bullet that can work in all scenarios. For instance, if
the domain shift between the distributions is extremely high,
it is likely that domain adaptation cannot recover the lost
accuracy. As a topic of future research, we plan to investigate
whether feasibility of domain adaptation could be quantified
in an empirically robust manner.

4 CONCLUSION
In this paper, we presented two short case studies to moti-
vate the need for sensory model adaptation. We found that
variabilities in sensor hardware as well as user behavior can
drastically degrade the performance of state of the art meth-
ods. Our work argues that unsupervised domain adaptation
is a promising technique to address these challenges and
we highlighted several research avenues on this topic that
could be of benefit for the workshop attendees as well as the
ubicomp community in general.
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