24,541 research outputs found
The Impact of Contaminated RR Lyrae/Globular Cluster Photometry on the Distance Scale
RR Lyrae variables and the stellar constituents of globular clusters are
employed to establish the cosmic distance scale and age of the universe.
However, photometry for RR Lyrae variables in the globular clusters M3, M15,
M54, M92, NGC2419, and NGC6441 exhibit a dependence on the clustercentric
distance. For example, variables and stars positioned near the crowded
high-surface brightness cores of the clusters may suffer from photometric
contamination, which invariably affects a suite of inferred parameters (e.g.,
distance, color excess, absolute magnitude, etc.). The impetus for this study
is to mitigate the propagation of systematic uncertainties by increasing
awareness of the pernicious impact of contaminated and radial-dependent
photometry.Comment: To appear in ApJ
Optical constants of uranium plasma Final report
Thermodynamic and optical properties of uranium plasma in proposed gaseous core nuclear rocket
Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional
We discuss self-consistently obtained ground-state electronic properties of
monolayers of graphene and a number of beyond graphene compounds, including
films of transition-metal dichalcogenides (TMDs), using the recently proposed
strongly constrained and appropriately normed (SCAN) meta-generalized gradient
approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA
results are compared with those based on the local density approximation (LDA)
as well as the generalized gradient approximation (GGA). As expected, the GGA
yields expanded lattices and softened bonds in relation to the LDA, but the
SCAN meta-GGA systematically improves the agreement with experiment. Our study
suggests the efficacy of the SCAN functional for accurate modeling of
electronic structures of layered materials in high-throughput calculations more
generally
- …