1,788 research outputs found

    Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes

    Get PDF
    This revision of the classification of eukaryotes follows that of Adl et al., 2012 [J. Euk. Microbiol. 59(5)] and retains an emphasis on protists. Changes since have improved the resolution of many nodes in phylogenetic analyses. For some clades even families are being clearly resolved. As we had predicted, environmental sampling in the intervening years has massively increased the genetic information at hand. Consequently, we have discovered novel clades, exciting new genera and uncovered a massive species level diversity beyond the morphological species descriptions. Several clades known from environmental samples only have now found their home. Sampling soils, deeper marine waters and the deep sea will continue to fill us with surprises. The main changes in this revision are the confirmation that eukaryotes form at least two domains, the loss of monophyly in the Excavata, robust support for the Haptista and Cryptista. We provide suggested primer sets for DNA sequences from environmental samples that are effective for each clade. We have provided a guide to trophic functional guilds in an appendix, to facilitate the interpretation of environmental samples, and a standardized taxonomic guide for East Asian users. THIS revision of the classification of eukaryotes updates that of the International Society of Protistologists (Adl et al. 2012). Since then, there has been a massive increase in DNA sequence information of phylogenetic relevance from environmental samples. We now have a much better sense of the undescribed biodiversity in our environment (De Vargas et al. 2015; Pawlowski et al. 2012). While significant, it still remains a partial estimation as several continents and soils in general are poorly sampled, and the deeper ocean is hard to reach. These new data clarified phylogenetic relationships and the new information is incorporated in this revision

    Metabolic Contributions of an Alphaproteobacterial Endosymbiont in the Apicomplexan Cardiosporidium cionae

    Get PDF
    Apicomplexa is a diverse protistan phylum composed almost exclusively of metazoan-infecting parasites, including the causative agents of malaria, cryptosporidiosis, and toxoplasmosis. A single apicomplexan genus, Nephromyces, was described in 2010 as a mutualist partner to its tunicate host. Here we present genomic and transcriptomic data from the parasitic sister species to this mutualist, Cardiosporidium cionae, and its associated bacterial endosymbiont. Cardiosporidium cionae and Nephromyces both infect tunicate hosts, localize to similar organs within these hosts, and maintain bacterial endosymbionts. Though many other protists are known to harbor bacterial endosymbionts, these associations are completely unknown in Apicomplexa outside of the Nephromycidae clade. Our data indicate that a vertically transmitted α-proteobacteria has been retained in each lineage since Nephromyces and Cardiosporidium diverged. This α-proteobacterial endosymbiont has highly reduced metabolic capabilities, but contributes the essential amino acid lysine, and essential cofactor lipoic acid to C. cionae. This partnership likely reduces resource competition with the tunicate host. However, our data indicate that the contribution of the single α-proteobacterial endosymbiont in C. cionae is minimal compared to the three taxa of endosymbionts present in the Nephromyces system, and is a potential explanation for the virulence disparity between these lineages

    Red Algal Mitochondrial Genomes Are More Complete than Previously Reported

    Get PDF
    The enslavement of an alpha-proteobacterial endosymbiont by the last common eukaryotic ancestor resulted in large-scale gene transfer of endosymbiont genes to the host nucleus as the endosymbiont transitioned into the mitochondrion. Mitochondrial genomes have experienced widespread gene loss and genome reduction within eukaryotes and DNA sequencing has revealed that most of these gene losses occurred early in eukaryotic lineage diversification. On a broad scale, more recent modifications to organelle genomes appear to be conserved and phylogenetically informative. The first red algal mitochondrial genome was sequenced more than 20 years ago, and an additional 29 Florideophyceae mitochondria have been added over the past decade. A total of 32 genes have been described to have been missing or considered non-functional pseudogenes from these Florideophyceae mitochondria. These losses have been attributed to endosymbiotic gene transfer or the evolution of a parasitic life strategy. Here we sequenced the mitochondrial genomes from the red algal parasite Choreocolax polysiphoniae and its host Vertebrata lanosa and found them to be complete and conserved in structure with other Florideophyceae mitochondria. This result led us to resequence the previously published parasite Gracilariophila oryzoides and its host Gracilariopsis andersonii, as well as reevaluate reported gene losses from published Florideophyceae mitochondria. Multiple independent losses of rpl20 and a single loss of rps11 can be verified. However by reannotating published data and resequencing specimens when possible, we were able to identify the majority of genes that have been reported as lost or pseudogenes from Florideophyceae mitochondria

    Red Algae Lose Key Mitochondrial Genes in Response to Becoming Parasitic

    Get PDF
    Red algal parasites are unusual because the vast majority of them parasitize species with which they share a recent common ancestor. This strategy has earned them the name “adelphoparasites,” from the Greek, adelpho, meaning “kin.” Intracellular adelphoparasites are very rare in nature, yet have independently evolved hundreds of times among the floridiophyte red algae. Much is known about the life history and infection cycle of these parasites but nearly nothing in known about their genomes. We sequenced the mitochondrial genomes of the free-living Gracilariopsis andersonii and its closely related parasite Gracilariophila oryzoides to determine what effect a parasitic lifestyle has on the genomes of red algal parasites. Whereas the parasite genome is similar to the host in many ways, the genes encoding essential proteins ATP8 and SDHC are pseudogenes in the parasite. The mitochondrial genome of parasite from a different class of red algae, Plocamiocolax puvinata, has lost the atp8 gene entirely, indicating that this gene is no longer critical in red algal parasite mitochondria

    Modification of Roberts' Theory for Rocket Exhaust Plumes Eroding Lunar Soil

    Get PDF
    In preparation for the Apollo program, Leonard Roberts developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts' assumed that the erosion rate is determined by the "excess shear stress" in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumed a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. He calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumes that only one particle size exists in the soil. He assumed that particle ejection angles are determined entirely by the shape of the terrain, which acts like a ballistic ramp, the particle aerodynamics being negligible. The predicted erosion rate and particle upper size limit appeared to be within an order of magnitude of small-scale terrestrial experiments, but could not be tested more quantitatively at the time. The lower particle size limit and ejection angle predictions were not tested

    A Revision of the Genus Cryptonemia (Halymeniaceae, Rhodophyta) in Bermuda, Western Atlantic Ocean, Including Five New Species and C. bermudensis (Collins & M. Howe) comb. nov [post-print]

    Get PDF
    Cryptonemia specimens collected in Bermuda over the past two decades were analysed using gene sequences encoding the large subunit of the nuclear ribosomal DNA and the large subunit of RuBisCO as genetic markers to elucidate their phylogenetic positions. They were additionally subjected to morphological assessment and compared with historical collections from the islands. Six species are presently found in the flora including C. bermudensis comb. nov., based on Halymenia bermudensis, and the following five new species: C. abyssalis, C. antricola, C. atrocostalis, C. lacunicola and C. perparva. Of the eight species known in the western Atlantic flora prior to this study, none is found in Bermuda. Specimens reported in the islands in the 1900s attributed to C. crenulataand C. luxurians are representative of the new species, C. antricola and C. atrocostalis, respectively
    corecore