75 research outputs found

    Neuroprotective effects of thymoquinone by the modulation of ER stress and apoptotic pathway in in vitro model of excitotoxicity.

    Get PDF
    Experimental evidence indicates that the activation of ionotropic glutamate receptors plays an important role in neurological disorders’ models such as epilepsy, cerebral ischemia and trauma. The glutamate receptor agonist kainic acid (KA) induces seizures and excitotoxic cell death in the CA3 region of the hippocampus. Thymoquinone (TQ) is the most important component of the essential oil obtained from black cumin (Nigella sativa L.) seeds. It has many pharmacological actions including antioxidant, anti-inflammatory, and anti-apoptotic effects. TQ was used in an in vitro experimental model of primary cultures where excitotoxicity was induced. Briefly, rat organotypic hippocampal slices were exposed to 5 µM KA for 24 h. Cell death in the CA3 subregions of slices was quantified by measuring propidium iodide fluorescence. The cross-talk between TQ, ER stress and apoptotic pathways was investigated by Western blot. In untreated slices TQ (10 µM) induced a significant increase on the PSD95 levels and it decreased the excitotoxic injury induced by KA. Additionally, TQ was able to ameliorate the KA-induced increase in unfolded proteins GRP78 and GRP94 expression. Finally, TQ was able to partially rescue the reduction of the KA-induced apoptotic pathway activation. Our results suggest that TQ modulates the processes leading to post-kainate neuronal death in the CA3 hippocampal area

    Efficacy of new class I medical device for actinic keratoses: a randomized controlled prospective study

    Get PDF
    AbstractBackground: The presence of Actinic Keratoses (AKs) represent the most important warning sign of subclinical ultraviolet radiation. Currently, the regular use of sunscreens is considered es..

    Formulation of Nanomicelles to Improve the Solubility and the Oral Absorption of Silymarin

    Get PDF
    Two novel nanomicellar formulations were developed to improve the poor aqueous solubility and the oral absorption of silymarin. Polymeric nanomicelles made of Soluplus and mixed nanomicelles combining Soluplus with d-α-tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS) were prepared using the thin film method. Physicochemical parameters were investigated, in particular the average diameter, the homogeneity (expressed as polydispersity index), the zeta potential, the morphology, the encapsulation efficiency, the drug loading, the critical micellar concentration and the cloud point. The sizes of ~60 nm, the narrow size distribution (polydispersity index ≤0.1) and the encapsulation efficiency >92% indicated the high affinity between silymarin and the core of the nanomicelles. Solubility studies demonstrated that the solubility of silymarin increased by ~6-fold when loaded into nanomicelles. Furthermore, the physical and chemical parameters of SLM-loaded formulations stored at room temperature and in refrigerated conditions (4 °C) were monitored over three months. In vitro stability and release studies in media miming the physiological conditions were also performed. In addition, both formulations did not alter the antioxidant properties of silymarin as evidenced by the 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH) assay. The potential of the nanomicelles to increase the intestinal absorption of silymarin was firstly investigated by the parallel artificial membrane permeability assay. Subsequently, transport studies employing Caco-2 cell line demonstrated that mixed nanomicelles statistically enhanced the permeability of silymarin compared to polymeric nanomicelles and unformulated extract. Finally, the uptake studies indicated that both nanomicellar formulations entered into Caco-2 cells via energy-dependent mechanisms

    The Neuroprotective Effects of mGlu1 Receptor Antagonists Are Mediated by an Enhancement of GABAergic Synaptic Transmission via a Presynaptic CB1 Receptor Mechanism

    Get PDF
    In this study, we investigated the cross-talk between mGlu1 and CB1 receptors in modulating GABA hippocampal output in whole-cell voltage clamp recordings in rat hippocampal acute slices, in organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD) and in gerbils subjected to global ischemia. CB1 receptor expression was studied using immunohistochemistry and the CA1 contents of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by LC-MS/MS. Our results show that mGlu1 receptor antagonists enhance sIPSCs in CA1 pyramidal cells and the basal and ischemic hippocampal release of GABA in vivo in a manner that is mediated by CB1 receptor activation. In hippocampal slices exposed to OGD and in ischemic gerbils, mGlu1 receptor antagonists protected CA1 pyramidal cells against post-ischemic injury and this effect was reduced by CB1 receptor activation. OGD induced a transient increase in the hippocampal content of AEA and this effect is prevented by mGlu1 receptor antagonist. Finally, OGD induced a late disruption of CB1 receptors in the CA1 region and the effect was prevented when CA1 pyramidal cells were protected by mGlu1 antagonists. Altogether, these results suggest a cooperative interaction between mGlu1 receptors and the endocannabinoid system in the mechanisms that lead to post-ischemic neuronal death

    Thyroid Hormone, Thyroid Hormone Metabolites and Mast Cells: A Less Explored Issue

    Get PDF
    Mast cells are primary players in immune and inflammatory diseases. In the brain, mast cells are located at the brain side of the blood brain barrier (BBB) exerting a crucial role in protecting the brain from xenobiotic invasion. Furthermore, recent advances in neuroscience indicate mast cells may play an important role in glial cell-neuron communication through the release of mediators, including histamine. Interestingly, brain mast cells contain not only 50% of the brain histamine but also hormones, proteases and lipids or amine mediators; and cell degranulation may be triggered by different stimuli activating membrane bound receptors including the four types of histaminergic receptors. Among hormones, mast cells can store thyroid hormone (T3) and express membrane-bound thyroid stimulating hormone receptors (TSHRs), thus suggesting from one side that thyroid function may affect mast cells function, from the other that mast cell degranulation may impact on thyroid function. In this respect, the research on hormones in mast cells is scarce. Recent pharmacological evidence indicates the existence of a non-genomic portion of the thyroid secretion including thyroid hormone metabolites. Among which the 3,5 diiodothyronine (3,5-T2), 3-iodothyroanamine (T1AM) and 3-iodothyroacetic acid (TA1) are the most studied. All these compounds are endogenously occurring and found to be increased in inflammatory-based diseases involving mast cells. T1AM and TA1 induce, as T3, neuroprotective effects and itch but also hyperalgesia in rodents with a mechanism largely unknown but mediated by the release of histamine. Due to the rapid onset of their effectiveness they may trigger histamine release from a cell where it is “ready-to-be released,” i.e., mast cells. Following a very thin path which passes through old experimental and clinical evidence, at the light of novel acquisitions on endogenous T3 metabolites, we aim to stimulate the attention on the possibility that mast cell histamine may be the connector of a novel (neuro) endocrine pathway linking the thyroid with mast cells

    The gliadin peptide 31-43 exacerbates kainate neurotoxicity in epilepsy models

    Get PDF
    Abstract Many neurological disorders of gluten-related diseases (GRD), not directly referable to the gastrointestinal tract, have been reported in association with celiac disease (CD), including ataxia, neuropathy and epilepsy. In particular, people with epilepsy diagnosed with CD seems to be characterized by intractable seizure. In these patients, gluten restriction diet has resulted in a reduction of both seizure frequency and antiepileptic medication. Many hypotheses have been suggested, however, molecular mechanisms that associates GRD and epileptogenesis are yet unknown. In this study, we examined the effects of the toxic gliadin peptide 31-43 in in vivo and in vitro models of kainate-induced-epilepsy. We observed that p31-43 exacerbates kainate neurotoxicity in epilepsy models, through the involvement of the enzymatic activity of transglutaminases. Moreover, electrophysiological recordings in CA3 pyramidal neurons of organotypic hippocampal slices show that p31-43 increases the inward current induced by kainate, the average sEPSC amplitude and the total number of evoked action potentials when applicated alone, thus suggesting that p31-43 is able to influence CA3-CA1 neurotransmission and can potentiate postsynaptic kainate receptors. Our results suggest a possible mechanism underlying the relationship between GRD and epilepsy through a potentiation of kainate-induced neurotoxicity and links the toxic effects of gluten to epilepsy
    • …
    corecore