13 research outputs found

    NK cell influence on the outcome of primary epstein-barr virus infection

    Get PDF
    The herpesvirus Epstein-Barr virus (EBV) was discovered as the first human candidate tumor virus in Burkitt's lymphoma more than 50 years ago. Despite its strong growth transforming capacity, more than 90% of the human adult population carries this virus asymptomatically under near perfect immune control. The mode of primary EBV infection is in part responsible for EBV-associated diseases, including Hodgkin's lymphoma. It is, therefore, important to understand which circumstances lead to symptomatic primary EBV infection, called infectious mononucleosis (IM). Innate immune control of lytic viral replication by early-differentiated natural killer (NK) cells was found to attenuate IM symptoms and continuous loss of the respective NK cell subset during the first decade of life might predispose for IM during adolescence. In this review, we discuss the evidence that NK cells are involved in the immune control of EBV, mechanisms by which they might detect and control lytic EBV replication, and compare NK cell subpopulations that expand during different human herpesvirus infections

    NK cell influence on the outcome of primary Epstein Barr virus infection

    No full text
    The herpesvirus Epstein Barr virus (EBV) was discovered as the first human candidate tumor virus in Burkitt’s lymphoma more than 50 years ago. Despite its strong growth transforming capacity, more than 90% of the human adult population carries this virus asymptomatically under near perfect immune control. The mode of primary EBV infection is in part responsible for EBV associated diseases including Hodgkin’s lymphoma. It is therefore important to understand which circumstances lead to symptomatic primary EBV infection, called infectious mononucleosis (IM). Innate immune control of lytic viral replication by early-differentiated natural killer (NK) cells was found to attenuate IM symptoms and continuous loss of the respective NK cell subset during the first decade of life might predispose for IM during adolescence. In this review we discuss the evidence that NK cells are involved in the immune control of EBV, mechanisms by which they might detect and control lytic EBV replication, and compare NK cell subpopulations that expand during different human herpesvirus infections

    Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells

    Full text link
    Type 3 innate lymphoid cells (ILC3s) fulfill protective functions at mucosal surfaces via cytokine production. Although their plasticity to become ILC1s, the innate counterparts of type 1 helper T cells, has been described previously, we report that they can differentiate into cytotoxic lymphocytes with many characteristics of early differentiated natural killer (NK) cells. This transition is promoted by the proinflammatory cytokines interleukin 12 (IL-12) and IL-15, and correlates with expression of the master transcription factor of cytotoxicity, eomesodermin (Eomes). As revealed by transcriptome analysis and flow cytometric profiling, differentiated ILC3s express CD94, NKG2A, NKG2C, CD56, and CD16 among other NK-cell receptors, and possess all components of the cytotoxic machinery. These characteristics allow them to recognize and kill leukemic cells with perforin and granzymes. Therefore, ILC3s can be harnessed for cytotoxic responses via differentiation under the influence of proinflammatory cytokines

    Immunosuppressive FK506 treatment leads to more frequent EBV-associated lymphoproliferative disease in humanized mice

    Get PDF
    Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication after organ transplantation frequently associated with the Epstein-Barr virus (EBV). Immunosuppressive treatment is thought to allow the expansion of EBV-infected B cells, which often express all eight oncogenic EBV latent proteins. Here, we assessed whether HLA-A2 transgenic humanized NSG mice treated with the immunosuppressant FK506 could be used to model EBV-PTLD. We found that FK506 treatment of EBV-infected mice led to an elevated viral burden, more frequent tumor formation and diminished EBV-induced T cell responses, indicative of reduced EBV-specific immune control. EBV latency III and lymphoproliferation-associated cellular transcripts were up-regulated in B cells from immunosuppressed animals, akin to the viral and host gene expression pattern found in EBV-PTLD. Utilizing an unbiased gene expression profiling approach, we identified genes differentially expressed in B cells of EBV-infected animals with and without FK506 treatment. Upon investigating the most promising candidates, we validated sCD30 as a marker of uncontrolled EBV proliferation in both humanized mice and in pediatric patients with EBV-PTLD. High levels of sCD30 have been previously associated with EBV-PTLD in patients. As such, we believe that humanized mice can indeed model aspects of EBV-PTLD development and may prove useful for the safety assessment of immunomodulatory therapies

    Cognate HLA absence in trans diminishes human NK cell education

    Get PDF
    NK cells are innate lymphocytes with protective functions against viral infections and tumor formation. Human NK cells carry inhibitory killer cell Ig-like receptors (KIRs), which recognize distinct HLAs. NK cells with KIRs for self-HLA molecules acquire superior cytotoxicity against HLA- tumor cells during education for improved missing-self recognition. Here, we reconstituted mice with human hematopoietic cells from donors with homozygous KIR ligands or with a mix of hematopoietic cells from these homozygous donors, allowing assessment of the resulting KIR repertoire and NK cell education. We found that co-reconstitution with 2 KIR ligand-mismatched compartments did not alter the frequency of KIR-expressing NK cells. However, NK cell education was diminished in mice reconstituted with parallel HLA compartments due to a lack of cognate HLA molecules on leukocytes for the corresponding KIRs. This change in NK cell education in mixed human donor-reconstituted mice improved NK cell-mediated immune control of EBV infection, indicating that mixed hematopoietic cell populations could be exploited to improve NK cell reactivity against leukotropic pathogens. Taken together, these findings indicate that leukocytes lacking cognate HLA ligands can disarm KIR+ NK cells in a manner that may decrease HLA- tumor cell recognition but allows for improved NK cell-mediated immune control of a human γ-herpesvirus

    Cognate HLA absence diminishes human NK cell education in trans

    Get PDF
    NK cells are innate lymphocytes with protective functions against viral infections and tumor formation. Human NK cells carry inhibitory killer cell Ig-like receptors (KIRs), which recognize distinct HLAs. NK cells with KIRs for self-HLA molecules acquire superior cytotoxicity against HLA(–) tumor cells during education for improved missing-self recognition. Here, we reconstituted mice with human hematopoietic cells from donors with homozygous KIR ligands or with a mix of hematopoietic cells from these homozygous donors, allowing assessment of the resulting KIR repertoire and NK cell education. We found that co-reconstitution with 2 KIR ligand–mismatched compartments did not alter the frequency of KIR-expressing NK cells. However, NK cell education was diminished in mice reconstituted with parallel HLA compartments due to a lack of cognate HLA molecules on leukocytes for the corresponding KIRs. This change in NK cell education in mixed human donor–reconstituted mice improved NK cell–mediated immune control of EBV infection, indicating that mixed hematopoietic cell populations could be exploited to improve NK cell reactivity against leukotropic pathogens. Taken together, these findings indicate that leukocytes lacking cognate HLA ligands can disarm KIR(+) NK cells in a manner that may decrease HLA(–) tumor cell recognition but allows for improved NK cell–mediated immune control of a human γ-herpesvirus
    corecore