7,751 research outputs found

    Is it indeed impossible to find quarks?

    Get PDF

    Rare Kaon Decays, Standard Model and New Physics

    Get PDF

    Is it still worth searching for lepton flavor violation in rare kaon decays?

    Full text link
    Prospective searches for lepton flavor violation (LFV) in rare kaon decays at the existing and future intermediate-energy accelerators are considered. The proposed studies are complementary to LFV searches in muon-decay experiments and offer a unique opportunity to probe models with approximately conserved fermion-generation quantum number with sensitivity superior to that in other processes. Consequently, new searches for LFV in kaon decays are an important and independent part of the general program of searches for lepton flavor violation in the final states with charged leptons.Comment: 30 pages, 10 figures. An extended version of the talk given at the Chicago Flavor Seminar, February 27, 2004. In the new version some misprints were corrected and some new data for LFV-processes were added. The main content of the paper was not changed. The paper is published in Yad. Fiz. 68, 1272 (2005

    Four lectures on secant varieties

    Full text link
    This paper is based on the first author's lectures at the 2012 University of Regina Workshop "Connections Between Algebra and Geometry". Its aim is to provide an introduction to the theory of higher secant varieties and their applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in Mathematics & Statistics), Springer/Birkhause

    Quasi-Homogeneous Thermodynamics and Black Holes

    Get PDF
    We propose a generalized thermodynamics in which quasi-homogeneity of the thermodynamic potentials plays a fundamental role. This thermodynamic formalism arises from a generalization of the approach presented in paper [1], and it is based on the requirement that quasi-homogeneity is a non-trivial symmetry for the Pfaffian form δQrev\delta Q_{rev}. It is shown that quasi-homogeneous thermodynamics fits the thermodynamic features of at least some self-gravitating systems. We analyze how quasi-homogeneous thermodynamics is suggested by black hole thermodynamics. Then, some existing results involving self-gravitating systems are also shortly discussed in the light of this thermodynamic framework. The consequences of the lack of extensivity are also recalled. We show that generalized Gibbs-Duhem equations arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An heuristic link between this generalized thermodynamic formalism and the thermodynamic limit is also discussed.Comment: 39 pages, uses RevteX. Published version (minor changes w.r.t. the original one

    Quantum Gravity Effects in Black Holes at the LHC

    Get PDF
    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 11 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new analysis of final products, final version accepted for publication in J. Phys.

    Searching for family-number conserving neutral gauge bosons from extra dimensions

    Full text link
    Previous studies have shown how the three generations of the Standard Model fermions can arise from a single generation in more than four dimensions, and how off-diagonal neutral couplings arise for gauge-boson Kaluza-Klein recurrences. These couplings conserve family number in the leading approximation. While an existing example, built on a spherical geometry, suggests a high compactification scale, we conjecture that the overall structure is generic, and work out possible signatures at colliders, compatible with rare decays data.Comment: 4 pages, 2 figures, jetpl.cls style, references adde
    corecore