220 research outputs found

    Introduction

    Get PDF

    Mutants of Cocaine Esterase

    Get PDF
    Provided are mutant cocaine esterase polypeptides and PEGylated formulations thereof

    Increased complexity of vasopressin's vascular actions

    Get PDF
    Vasopressin is becoming a widely used pressor in conditions with severe hypotension. Like several other hormones important in cardiovascular and extracellular fluid control, however, vasopressin can activate several receptors that when pharmacologically or pathologically stimulated may result in conflicting effects. In the present issue of Critical Care, Rehberg and colleagues examined the hypothesis that blockade of vasopressin V2 receptor during septic shock may be beneficial. Their tantalizing results indicate that future work must consider the precise vasopressin receptors that are stimulated and/or inhibited

    Cross reactive arrays of three-way junction sensors for steroid determination

    Get PDF
    This invention provides analyte sensitive oligonucleotide compositions for detecting and analyzing analytes in solution, including complex solutions using cross reactive arrays of analyte sensitive oligonucleotide compositions

    Targeting the NO/cGMP/CREB Phosphorylation Signaling Pathway in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form of senile dementia. Recently, scientists have put significant effort into exploring the molecular mechanisms involved in the pathological processes leading to the disease. A vast number of studies have focused on understanding the nitric oxide (NO) signaling pathway, which culminates with the phosphorylation of the transcription factor cAMP-responsive element-binding protein (CREB) through the increase of the second messenger cyclic guanosine monophosphate (cGMP) and activation of cGMP-dependent protein kinase. This book chapter provides an overview of the progress being made in modulating the hippocampal synaptic transmissions, which are critical for learning and memory, by targeting the different components of the NO/cGMP/CREB phosphorylation signaling pathway. Furthermore, a description of recent research on this pathway through the use of phosphodiesterase inhibitors is emphasized

    Validation of a New NIRS Method for Measuring Muscle Oxygenation During Rhythmic Handgrip Exercise

    Get PDF
    Near infrared spectroscopy (NIRS) is commonly used to measure muscle oxygenation during exercise and recovery. Current NIRS algorithms do not account for variation in water content and optical pathlength during exercise. The current effort attempts to validate a newly developed NIRS algorithm during rhythmic handgrip exercise and recovery. Six female subjects, aver age 28 +/- 6 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space. A NIRS sensor with 30 mm source-detector separation was placed on the flexor digitorum profundus. Subjects performed two 5-min bouts of rhythmic handgrip exercise (2 s contraction/1 s relaxation) at 15% and 30% of maximal voluntary contraction. Venous blood was sampled before each bout, during the last minute of exercise, and after 5 minutes of recovery. Venous oxygen saturation (SvO2) was measured with a I-stat CG-4+ cartridge. Spectra were collected between 700-900 nm. A modified Beer's Law formula was used to calculate the absolute concentration of oxyhemoglobin (HbO2), deoxyhemoglobin (Hb) and water, as well as effective pathlength for each spectrum. Muscle oxygen saturation (SmO2) was calculated from the HbO2 and Hb results. The correlation between SvO2 and SmO2 was determined. Optical pathlength and water varied significantly during each exercise bout, with pathlength increasing approximately 20% and water increasing about 2%. R2 between blood and muscle SO2 was found to be 0.74, the figure shows the relationship over SvO2 values between 22% and 82%. The NIRS measurement was, on average, 6% lower than the blood measurement. It was concluded that pathlength changes during exercise because muscle contraction causes variation in optical scattering. Water concentration also changes, but only slightly. A new NIRS algorithm which accounts for exercise-induced variation in water and pathlength provided an accurate assessment of muscle oxygen saturation before, during and after exercise

    Comparison of Interstitial Fluid pH, PCO2, PO2 with Venous Blood Values During Repetitive Handgrip Exercise

    Get PDF
    We evaluated the use of a small, fiber optic sensor to measure pH, PCO2 and PO2 from forearm muscle interstitial fluid (IF) during handgrip dynamometry. PURPOSE: Compare pH, PCO2 and PO2 values obtained from venous blood with those from the IF of the flexor digitorum superficialis (FDS) during three levels of exercise intensity. METHODS: Six subjects (5M/1F), average age 29+/-5 yrs, participated in the study. A venous catheter was placed in the retrograde direction in the antecubital space and a fiber optic sensor (Paratrend, Diametrics Medical, Inc.) was placed through a 22 G catheter into the FDS muscle under ultrasound guidance. After a 45 min rest period, subjects performed three 5-min bouts of repetitive handgrip exercise (2s contraction/1 s relaxation) at attempted levels of 15%, 30% and 45% of maximal voluntary contraction. The order of the exercise bouts was random with the second and third bouts started after blood lactate had returned to baseline. Venous blood was sampled every minute during exercise and analyzed with an I-Stat CG-4+ cartridge, while IF fiber optic sensor measurements were obtained every 2 s. Change from pre-exercise baseline to end of exercise was computed for pH, PCO2 and PO2. Blood and IF values were compared with a paired t-test. RESULTS: Baseline values for pH, PCO2 and PO2 were 7.37+/-0.02, 46+/-4 mm Hg, and 36+/-6 mm Hg respectively in blood and 7.39+/-0.02, 44+/-6 mm Hg, and 35+/-14 mm Hg in IF. Average changes over all exercise levels are noted in the Table below. For each parameter the exercise-induced change was at least twice as great in IF as in blood. In blood and IF, pH and PCO2 increases were directly related to exercise intensity. Change in venous PO2 was unrelated to exercise intensity, while IF PO2 decreased with increases in exercise intensity. CONCLUSIONS: Measurement of IF pH, PCO2 and PO2 is more sensitive to exercise intensity than measurement of the same parameters in venous blood and provides continuous assessment during and after exercise
    • …
    corecore