1,005 research outputs found
Dessins, their delta-matroids and partial duals
Given a map on a connected and closed orientable surface, the
delta-matroid of is a combinatorial object associated to which captures some topological information of the embedding. We explore how
delta-matroids associated to dessins d'enfants behave under the action of the
absolute Galois group. Twists of delta-matroids are considered as well; they
correspond to the recently introduced operation of partial duality of maps.
Furthermore, we prove that every map has a partial dual defined over its field
of moduli. A relationship between dessins, partial duals and tropical curves
arising from the cartography groups of dessins is observed as well.Comment: 34 pages, 20 figures. Accepted for publication in the SIGMAP14
Conference Proceeding
Statistical-mechanical lattice models for protein-DNA binding in chromatin
Statistical-mechanical lattice models for protein-DNA binding are well
established as a method to describe complex ligand binding equilibriums
measured in vitro with purified DNA and protein components. Recently, a new
field of applications has opened up for this approach since it has become
possible to experimentally quantify genome-wide protein occupancies in relation
to the DNA sequence. In particular, the organization of the eukaryotic genome
by histone proteins into a nucleoprotein complex termed chromatin has been
recognized as a key parameter that controls the access of transcription factors
to the DNA sequence. New approaches have to be developed to derive statistical
mechanical lattice descriptions of chromatin-associated protein-DNA
interactions. Here, we present the theoretical framework for lattice models of
histone-DNA interactions in chromatin and investigate the (competitive) DNA
binding of other chromosomal proteins and transcription factors. The results
have a number of applications for quantitative models for the regulation of
gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J.
Phys.: Cond. Mat
A remark on the three approaches to 2D Quantum gravity
The one-matrix model is considered. The generating function of the
correlation numbers is defined in such a way that this function coincide with
the generating function of the Liouville gravity. Using the Kontsevich theorem
we explain that this generating function is an analytic continuation of the
generating function of the Topological gravity. We check the topological
recursion relations for the correlation functions in the -critical Matrix
model.Comment: 11 pages. Title changed, presentation improve
Universal geometrical factor of protein conformations as a consequence of energy minimization
The biological activity and functional specificity of proteins depend on
their native three-dimensional structures determined by inter- and
intra-molecular interactions. In this paper, we investigate the geometrical
factor of protein conformation as a consequence of energy minimization in
protein folding. Folding simulations of 10 polypeptides with chain length
ranging from 183 to 548 residues manifest that the dimensionless ratio
(V/(A)) of the van der Waals volume V to the surface area A and average
atomic radius of the folded structures, calculated with atomic radii
setting used in SMMP [Eisenmenger F., et. al., Comput. Phys. Commun., 138
(2001) 192], approach 0.49 quickly during the course of energy minimization. A
large scale analysis of protein structures show that the ratio for real and
well-designed proteins is universal and equal to 0.491\pm0.005. The fractional
composition of hydrophobic and hydrophilic residues does not affect the ratio
substantially. The ratio also holds for intrinsically disordered proteins,
while it ceases to be universal for polypeptides with bad folding properties.Comment: 6 pages, 1 table, 4 figure
Strings from Feynman Graph counting : without large N
A well-known connection between n strings winding around a circle and
permutations of n objects plays a fundamental role in the string theory of
large N two dimensional Yang Mills theory and elsewhere in topological and
physical string theories. Basic questions in the enumeration of Feynman graphs
can be expressed elegantly in terms of permutation groups. We show that these
permutation techniques for Feynman graph enumeration, along with the Burnside
counting lemma, lead to equalities between counting problems of Feynman graphs
in scalar field theories and Quantum Electrodynamics with the counting of
amplitudes in a string theory with torus or cylinder target space. This string
theory arises in the large N expansion of two dimensional Yang Mills and is
closely related to lattice gauge theory with S_n gauge group. We collect and
extend results on generating functions for Feynman graph counting, which
connect directly with the string picture. We propose that the connection
between string combinatorics and permutations has implications for QFT-string
dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos
correcte
Modelling stochastic bivariate mortality
Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining increasing reputation as a way to represent mortality risk. This paper represents a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach.
On the theoretical side, we extend to couples the Cox processes set up, i.e. the idea that mortality is driven by a jump process whose intensity is itself a stochastic process, proper of a particular generation within each gender. Dependence between the survival times of the members of a couple is captured by an Archimedean copula.
On the calibration side, we fit the joint survival function by calibrating separately the (analytical) copula and the (analytical) margins. First, we select the best fit copula according to the methodology of Wang and Wells (2000) for censored data. Then, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the analytical marginal survival functions. Coupling the best fit copula with the calibrated margins we obtain, on a sample generation, a joint survival function which incorporates the stochastic nature of mortality improvements and is far from representing independency.On the contrary, since the best fit copula turns out to be a Nelsen one, dependency is increasing with age and long-term dependence exists
Valorization of citrus waste for circular economy: A case study on bergamot pomace as sorbent for Cd2+ removal and source of added value compounds
The potential of bergamot pomace for the development of materials able to efficiently remove cadmium(II) from water and for the recovery of bioactive compounds has been explored. To this purpose, raw bergamot waste resulting after industrial essential oil and juice extraction was mechanically ground, desiccated, pretreated with various chemicals (e.g. NaOH, HNO3, H2O2, H2O, 2-propanol) and dried up to constant weight thus affording solid samples that were characterized by ATR FT-IR spectroscopy. The solutions recovered after the pomace pretreatments were investigated by means of HPLC in combination with PDA and MS detectors to assess the residual content of bioactive components, e.g., phenolic and oxygenated heterocyclic compounds (OHCs). Potentiometric studies were performed on suspensions at t = 25 °C, I = 0.10 mol dm−3 in NaNO3(aq) to investigate pomace acid-base properties and binding ability towards Cd2+ ions. Sorption efficiency was investigated by means of kinetic and isotherm batch experiments and resulted to be 92 ± 7 mg g−1. Once loaded, sorbent reusability was tested by performing metal stripping cycles using various desorbents (HCl, HNO3, L-GLDA, S,S-EDDS, EDTA) with an efficiency of ∼ 60% after one cycle. The equilibrium Cd2+ concentration in solution was determined by differential pulse voltammetry and ICP-OES
- …