1,434 research outputs found

    Hurwitz numbers and intersections on moduli spaces of curves

    Full text link
    This article is an extended version of preprint math.AG/9902104. We find an explicit formula for the number of topologically different ramified coverings of a sphere by a genus g surface with only one complicated branching point in terms of Hodge integrals over the moduli space of genus g curves with marked points.Comment: 30 pages (AMSTeX). Minor typos are correcte

    New alphabet-dependent morphological transition in a random RNA alignment

    Full text link
    We study the fraction ff of nucleotides involved in the formation of a cactus--like secondary structure of random heteropolymer RNA--like molecules. In the low--temperature limit we study this fraction as a function of the number cc of different nucleotide species. We show, that with changing cc, the secondary structures of random RNAs undergo a morphological transition: f(c)1f(c)\to 1 for cccrc \le c_{\rm cr} as the chain length nn goes to infinity, signaling the formation of a virtually "perfect" gapless secondary structure; while f(c)ccrf(c)c_{\rm cr}, what means that a non-perfect structure with gaps is formed. The strict upper and lower bounds 2ccr42 \le c_{\rm cr} \le 4 are proven, and the numerical evidence for ccrc_{\rm cr} is presented. The relevance of the transition from the evolutional point of view is discussed.Comment: 4 pages, 3 figures (title is changed, text is essentially reworked), accepted in PR

    Random Time Forward Starting Options

    Full text link
    We introduce a natural generalization of the forward-starting options, first discussed by M. Rubinstein. The main feature of the contract presented here is that the strike-determination time is not fixed ex-ante, but allowed to be random, usually related to the occurrence of some event, either of financial nature or not. We will call these options {\bf Random Time Forward Starting (RTFS)}. We show that, under an appropriate "martingale preserving" hypothesis, we can exhibit arbitrage free prices, which can be explicitly computed in many classical market models, at least under independence between the random time and the assets' prices. Practical implementations of the pricing methodologies are also provided. Finally a credit value adjustment formula for these OTC options is computed for the unilateral counterparty credit risk.Comment: 19 pages, 1 figur

    A remark on the three approaches to 2D Quantum gravity

    Full text link
    The one-matrix model is considered. The generating function of the correlation numbers is defined in such a way that this function coincide with the generating function of the Liouville gravity. Using the Kontsevich theorem we explain that this generating function is an analytic continuation of the generating function of the Topological gravity. We check the topological recursion relations for the correlation functions in the pp-critical Matrix model.Comment: 11 pages. Title changed, presentation improve

    Statistical-mechanical lattice models for protein-DNA binding in chromatin

    Get PDF
    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibriums measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.Comment: 19 pages, 7 figures, accepted author manuscript, to appear in J. Phys.: Cond. Mat

    Meanders and the Temperley-Lieb algebra

    Full text link
    The statistics of meanders is studied in connection with the Temperley-Lieb algebra. Each (multi-component) meander corresponds to a pair of reduced elements of the algebra. The assignment of a weight qq per connected component of meander translates into a bilinear form on the algebra, with a Gram matrix encoding the fine structure of meander numbers. Here, we calculate the associated Gram determinant as a function of qq, and make use of the orthogonalization process to derive alternative expressions for meander numbers as sums over correlated random walks.Comment: 85p, uuencoded, uses harvmac (l mode) and epsf, 88 figure

    Necklace-Cloverleaf Transition in Associating RNA-like Diblock Copolymers

    Full text link
    We consider a AmBn{\rm A}_m{\rm B}_n diblock copolymer, whose links are capable of forming local reversible bonds with each other. We assume that the resulting structure of the bonds is RNA--like, i.e. topologically isomorphic to a tree. We show that, depending on the relative strengths of A--A, A--B and B--B contacts, such a polymer can be in one of two different states. Namely, if a self--association is preferable (i.e., A--A and B--B bonds are comparatively stronger than A--B contacts) then the polymer forms a typical randomly branched cloverleaf structure. On the contrary, if alternating association is preferable (i.e. A--B bonds are stronger than A--A and B--B contacts) then the polymer tends to form a generally linear necklace structure (with, probably, some rear side branches and loops, which do not influence the overall characteristics of the chain). The transition between cloverleaf and necklace states is studied in details and it is shown that it is a 2nd order phase transition.Comment: 17 pages, 9 figure

    Strings from Feynman Graph counting : without large N

    Full text link
    A well-known connection between n strings winding around a circle and permutations of n objects plays a fundamental role in the string theory of large N two dimensional Yang Mills theory and elsewhere in topological and physical string theories. Basic questions in the enumeration of Feynman graphs can be expressed elegantly in terms of permutation groups. We show that these permutation techniques for Feynman graph enumeration, along with the Burnside counting lemma, lead to equalities between counting problems of Feynman graphs in scalar field theories and Quantum Electrodynamics with the counting of amplitudes in a string theory with torus or cylinder target space. This string theory arises in the large N expansion of two dimensional Yang Mills and is closely related to lattice gauge theory with S_n gauge group. We collect and extend results on generating functions for Feynman graph counting, which connect directly with the string picture. We propose that the connection between string combinatorics and permutations has implications for QFT-string dualities, beyond the framework of large N gauge theory.Comment: 55 pages + 10 pages Appendices, 23 figures ; version 2 - typos correcte

    Dessins, their delta-matroids and partial duals

    Full text link
    Given a map M\mathcal M on a connected and closed orientable surface, the delta-matroid of M\mathcal M is a combinatorial object associated to M\mathcal M which captures some topological information of the embedding. We explore how delta-matroids associated to dessins d'enfants behave under the action of the absolute Galois group. Twists of delta-matroids are considered as well; they correspond to the recently introduced operation of partial duality of maps. Furthermore, we prove that every map has a partial dual defined over its field of moduli. A relationship between dessins, partial duals and tropical curves arising from the cartography groups of dessins is observed as well.Comment: 34 pages, 20 figures. Accepted for publication in the SIGMAP14 Conference Proceeding
    corecore