2,841 research outputs found

    The three-dimensional instability of strained vortices in a viscous fluid

    Get PDF
    The recent theory describing 3-D exact solutions of the Navier–Stokes equations is applied to the problem of stability of 2-D viscous flow with elliptical streamlines. An intrinsically inviscid instability mechanism persists in all such flows provided the length scale of the disturbance is sufficiently large. Evidence is presented that this mechanism may be responsible for 3-D instabilities in high Reynolds number flows whose vortex structures can be locally described by elliptical streamlines

    Flow cytometric characterization of freshwater crayfish hemocytes for the examination of physiological status in wild and captive animals

    Get PDF
    Enumeration of invertebrate hemocytes is a potentially powerful tool for the determination of physiological effects of extrinsic stressors, such as hypoxia, disease, and toxicant exposure. A detailed flow cytometric method of broad application was developed for the objective characterization and enumeration of the hemocytes of New Zealand freshwater crayfish Paranephrops planifrons for the purpose of physiological health assessment. Hemocyte populations were isolated by flow cytometric sorting based on differential light scatter properties followed by morphological characterization via light microscopy and software image analysis. Cells were identified as hyaline, semigranular, and granular hemocytes based on established invertebrate hemocyte classification. A characteristic decrease in nuclear size, an increase in granularity between the hyaline and granular cells, and the eccentric location of nuclei in granular cells were also observed. The granulocyte subpopulations were observed to possess varying degrees of granularity. The developed methodology was used to perform total and differential hemocyte counts from three lake populations and between wild and captive crayfish specimens. Differences in total and differential hemocyte counts were not observed among the wild populations. However, specimens held in captivity for 14 d exhibited a significant 63% reduction in total hemocyte count, whereas the relative hemocyte proportions remained the same. These results demonstrate the utility of this method for the investigation of subacute stressor effects in selected decapod crustaceans

    Unified microscopic approach to the interplay of pinned-Wigner-solid and liquid behavior of lowest-Landau-level states in the neighborhood of nu=1/3

    Full text link
    Motivated by recent experiments, and using the rotating-and-vibrating electron-molecule (RVEM) theory [Yannouleas and Landman, Phys. Rev. B 66, 115315 (2002); Phys. Rev. A 81, 023609 (2010)], in conjunction with exact diagonalization, we develop a unified microscopic approach for the interplay between liquid fractional-quantum-Hall-effect (FQHE) states and Wigner-solid states in the lowest Landau level (LLL) in the neighborhood of nu=1/3. Liquid characteristics of the FQHE states are associated with the symmetry-conserving rotations and vibrations of the electron molecule. Although the electron densities of the symmetry-conserving LLL states do not exhibit crystalline patterns, the intrinsic crystalline correlations are reflected in the conditional probability distributions and the emergence of cusp yrast states in the LLL spectra. It is shown that away from the exact fractional fillings, weak pinning perturbations (due to weak disorder) may overcome the energy gaps between adjacent global states and generate pinned broken symmetry ground states as a superposition of symmetry-conserving LLL states with different total angular momenta. The electron densities of such mixed states (without good angular momentum quantum numbers) exhibit oscillating patterns that correspond to molecular crystallites. These pinned Wigner crystallites represent finite-size precursors of the bulk Wigner-solid state. It is further shown that the emergence of these molecular crystallites is a consequence of the presence of RVEM components in the symmetry-conserving LLL states. In addition, it is shown that the RVEM approach accounts for the Wigner-solid state in the neighborhood of nu=1, which was also found in the experiments. We utilize results for sizes in a wide range from N=6 to N=29 electrons, and we address the extrapolation to the thermodynamic limit.Comment: 19 pages, 17 figures, 4 tables. For related papers, see http://www.prism.gatech.edu/~ph274cy

    Harno: Legal Education in the United States

    Get PDF

    Human Sterilization Movement, The

    Get PDF

    Human Sterilization Movement, The

    Get PDF

    The Purpose Of The Law School

    Get PDF

    Coronal and chromospheric physics

    Get PDF
    Achievements and completed results are discussed for investigations covering solar activity during the solar maximum mission and the solar maximum year; other studies of solar activity and variability; infrared and submillimeter photometry; solar-related atomic physics; coronal and transition region studies; prominence research; chromospheric research in quiet and active regions; solar dynamics; eclipse studies; and polarimetry and magnetic field measurements. Contributions were also made in defining the photometric filterograph instrument for the solar optical telescope, designing the combined filter spectrograph, and in expressing the scientific aims and implementation of the solar corona diagnostic mission

    Tempestas ex machina: A review of machine learning methods for wavefront control

    Full text link
    As we look to the next generation of adaptive optics systems, now is the time to develop and explore the technologies that will allow us to image rocky Earth-like planets; wavefront control algorithms are not only a crucial component of these systems, but can benefit our adaptive optics systems without requiring increased detector speed and sensitivity or more effective and efficient deformable mirrors. To date, most observatories run the workhorse of their wavefront control as a classic integral controller, which estimates a correction from wavefront sensor residuals, and attempts to apply that correction as fast as possible in closed-loop. An integrator of this nature fails to address temporal lag errors that evolve over scales faster than the correction time, as well as vibrations or dynamic errors within the system that are not encapsulated in the wavefront sensor residuals; these errors impact high contrast imaging systems with complex coronagraphs. With the rise in popularity of machine learning, many are investigating applying modern machine learning methods to wavefront control. Furthermore, many linear implementations of machine learning methods (under varying aliases) have been in development for wavefront control for the last 30-odd years. With this work we define machine learning in its simplest terms, explore the most common machine learning methods applied in the context of this problem, and present a review of the literature concerning novel machine learning approaches to wavefront control.Comment: SPIE Proceeding: 2023 / 12680-1
    corecore