879 research outputs found

    Vitamin K2 and its Impact on Tooth Epigenetics

    Get PDF
    The impact of nutritional signals plays an important role in systemic-based «models» of dental caries. Present hypotheses now focus both on the oral environment and other organs, like the nervous system and brain. The tooth is subjected to shear forces, nourishing and cleansing, and its present “support system” (the hypothalamus/parotid axis) relays endocrine signaling to the parotid gland. Sugar consumption enhances hypothalamic oxidative stress (ROS), reversing dentinal fluid flow, thus creating an enhanced vulnerability to the oral bacterial flora. The acid, produced by the oral bacterial flora, then leads to erosion of the dentine, and an irreversible loss of dental enamel layers. This attack brings about inflammatory responses, yielding metalloproteinase-based “dissolution”. However, vitamin K2 (i.e. MK-4/MK-7) may come to the rescue with its antioxidant property, locally (mouth cavity) or systemically (via the brain), thus sustaining/preserving hormone-induced dentinal fluid flow (encompassing oxidative stress) and boosting/magnifying bodily inflammatory responses. However, sugars may also reduce the tooth’s natural defences through endocrine signaling, thus enhancing acid-supported enamel dentine erosion. Vitamin K2 sustains and improves the salivary buffering capacity via its impact on the secretion/flow of calcium and inorganic phosphates. Interestingly, primitive cultures’ diets (low-sugar and high-K2 diets) preserve dental health

    Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots

    Full text link
    We study the Stark effect for an exciton confined in a pair of vertically coupled quantum dots. A single-band approximation for the hole and a parabolic lateral confinement potential are adopted which allows for the separation of the lateral center-of-mass motion and consequently for an exact numerical solution of the Schr\"odinger equation. We show that for intermediate tunnel coupling the external electric field leads to the dissociation of the exciton via an avoided crossing of bright and dark exciton energy levels which results in an atypical form of the Stark shift. The electric-field-induced dissociation of the negative trion is studied using the approximation of frozen lateral degrees of freedom. It is shown that in a symmetric system of coupled dots the trion is more stable against dissociation than the exciton. For an asymmetric system of coupled dots the trion dissociation is accompanied by a positive curvature of the recombination energy line as a function of the electric field.Comment: PRB - in prin

    Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots

    Full text link
    We report significant deviations from the usual quadratic dependence of the ground state interband transition energy on applied electric fields in InAs/GaAs self-assembled quantum dots. In particular, we show that conventional second-order perturbation theory fails to correctly describe the Stark shift for electric field below F=10F = 10 kV/cm in high dots. Eight-band k⋅p{\bf k}\cdot{\bf p} calculations demonstrate this effect is predominantly due to the three-dimensional strain field distribution which for various dot shapes and stoichiometric compositions drastically affects the hole ground state. Our conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure

    Time-resolved spectroscopy of multi-excitonic decay in an InAs quantum dot

    Full text link
    The multi-excitonic decay process in a single InAs quantum dot is studied through high-resolution time-resolved spectroscopy. A cascaded emission sequence involving three spectral lines is seen that is described well over a wide range of pump powers by a simple model. The measured biexcitonic decay rate is about 1.5 times the single-exciton decay rate. This ratio suggests the presence of selection rules, as well as a significant effect of the Coulomb interaction on the biexcitonic wavefunction.Comment: one typo fixe

    Optical excitations of a self assembled artificial ion

    Full text link
    By use of magneto-photoluminescence spectroscopy we demonstrate bias controlled single-electron charging of a single quantum dot. Neutral, single, and double charged excitons are identified in the optical spectra. At high magnetic fields one Zeeman component of the single charged exciton is found to be quenched, which is attributed to the competing effects of tunneling and spin-flip processes. Our experimental data are in good agreement with theoretical model calculations for situations where the spatial extent of the hole wave functions is smaller as compared to the electron wave functions.Comment: to be published in Physical Review B (rapid communication

    Few-Particle Effects in Semiconductor Quantum Dots: Observation of Multi-Charged-Excitons

    Full text link
    We investigate experimentally and theoretically few-particle effects in the optical spectra of single quantum dots (QDs). Photo-depletion of the QD together with the slow hopping transport of impurity-bound electrons back to the QD are employed to efficiently control the number of electrons present in the QD. By investigating structurally identical QDs, we show that the spectral evolutions observed can be attributed to intrinsic, multi-particle-related effects, as opposed to extrinsic QD-impurity environment-related interactions. From our theoretical calculations we identify the distinct transitions related to excitons and excitons charged with up to five additional electrons, as well as neutral and charged biexcitons.Comment: 4 pages, 4 figures, revtex. Accepted for publication in Physical Review Letter

    Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing

    Full text link
    We propose an all-optical implementation of quantum-information processing in semiconductor quantum dots, where electron-hole excitations (excitons) serve as the computational degrees of freedom (qubits). We show that the strong dot confinement leads to an overall enhancement of Coulomb correlations and to a strong renormalization of the excitonic states, which can be exploited for performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for publication in Phys. Rev. B (Rapid Communication

    Allogeneic Mesenchymal Stem Cells as a Treatment for Aging Frailty

    Get PDF
    As life expectancy is projected to increase in the ensuing decades, individuals of older age continue to exceed the previous generation’s lifespan. Advancing age is associated with a reduction in physical and mental functional capacity, and chronic inflammation is a major factor contributing to this decline. A heightened inflammatory state can lead to exhaustion, weakness, weight loss, slow gate speed, and an overall decrease in activity level. These phenotypes define the onset of the disease process known as frailty. Frailty is a growing epidemic, which severely undermines a person’s ability to deal with outside stressors, and increases their rate of hospitalization, institutionalization, and mortality. Current interventions focus on preventative care by improving exercise capacity, strength, nutritional supplementation, diet, and mobility. However, a biological cure has heretofore remained elusive. Here, we introduce the novel therapeutic principle that mesenchymal stem cell (MSC) therapy may represent a safe, practical, and efficacious both the treatment and prevention of frailty in individuals of advancing age. To date, a phase I safety trial reveals an excellent safety profile and suggests that mesenchymal stem cells can ameliorate signs and symptoms of frailty. These early studies lay the groundwork for future large-scale clinical trials of this exciting and novel therapeutic concept that has the potential to expand health span in the aging population

    CaracterĂ­sticas sensoriais da carne de cordeiros Morada Nova submetidos a dietas com diferentes nĂ­veis de farelo de castanha de caju.

    Get PDF
    Utilizou-se dezenove cordeiras Morada Nova, alimentadas com nĂ­veis crescentes de inclusĂŁo de farelo de castanha de caju (0, 3, 6 e 9%), abatidas ao atingirem peso mĂ©dio de 20 kg e avaliadas suas caracterĂ­sticas sensoriais de dureza, suculĂȘncia, aroma, sabor e aceitação global, atravĂ©s de um painel com 10 julgadores treinados. Sendo observada diferença somente para os atributos cor e sabor, com a dieta com 6% de farelo de castanha de caju apresentado as maiores mĂ©dias. Assim, a adição de farelo de castanha de caju na dieta de cordeiros Morada Nova influencia as caracterĂ­sticas sensoriais de cor e sabor da carne, Ă  medida que o nĂ­vel de inclusĂŁo Ă© elevado. Sensorial characteristics of the Morada Nova lambs meat submitted to diets with different levels of inclusion of cashew nut meal. Abstract: Nineteen lambs Morada Nova, fed with increasing levels of inclusion of cashew nut meal (0, 3, 6 and 9%) to reach slaughter body weight of 20 kg and to evaluate for their sensorial characteristic of tenderness, succulence, odour, flavor and global acceptance by a panel of 10 trained judges. Difference was observed only for color and flavor, in the diet with 6% of cashew nut meal presented the highest averages. Thus, the addition of cashew nut meal in the diet of Morada Nova lambs influence the sensorial characteristics of color and flavor of meat, as that the level inclusion is high
    • 

    corecore