592 research outputs found

    The ocular lens: bioelectric properties and ionic movement

    Get PDF

    The determinants of wage increases in new manufacturing plants in rural areas

    Get PDF
    The research reported here was designed to explain variation in wage changes of new industrial plant employees. Following the theoretical perspectives of Gotsch, wage changes were hypothesized to result from a combination of employee household, community, and plant characteristics. The greatest difficulty in this study was choosing appropriate operational measures for independent variables that were highly correlated with these theoretical factors.Southern journal of agricultural economics, July 1981, p. 84-88Includes bibliographical reference

    Improved accuracy in flow mapping of congenital heart disease using stationary phantom technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow mapping by cardiovascular magnetic resonance has become the gold standard for non-invasively defining cardiac output (CO), shunt flow and regurgitation. Previous reports have highlighted the presence of inherent errors in flow mapping that are improved with the use of a stationary phantom control. To our knowledge, these studies have only been performed in healthy volunteers.</p> <p>Results</p> <p>We analyzed the variation in flow measurements made with and without stationary phantom correction in 31 patients with congenital heart disease. Variation in stroke volume (SV) measurements was seen in all vessels across all patient groups. The variation was largest when analyzing the right ventricular outflow tract (RVOT), with a range of absolute differences in SV from 0.2 to 70 ml and in CO from 0.02 to 4.8 L/min. In patients with repaired Tetrology of Fallot (ToF), the average ratio of pulmonary to systemic blood flow (Qp:Qs) was 1.18 without and 1.02 with phantom correction. Without performing phantom correction, 23% of the repaired ToF patients were classified as having a residual shunt as compared to 0% when flow mapping was performed with phantom correction. Similarly, in patients with known atrial level shunting (ASD/PAPVR) 20% of patients had no shunt when flow mapping was performed without phantom correction as compared to 0% with phantom correction. In patients with bicuspid aortic valves (BAV), the differences in the regurgitant fraction between measuring flow with and without phantom correction ranged from 0 to 30%, while the regurgitant fraction in the RVOT of ToF patients varied by as much as 31%.</p> <p>Conclusion</p> <p>The impact of inherent errors in CMR flow mapping should not be underestimated. While the variation across a population may not display a significant trend, for any individual patient it can be quite large. Failure to correct for such variation can lead to clinically significant misinterpretation of flow data. The use of the stationary phantom correction technique appears to improve accuracy both in normal patients as well as those with congenital heart disease.</p

    Electrochemically mediated separation for carbon capture

    Get PDF
    Carbon capture technology has been proposed as an effective approach for the mitigation of anthropogenic CO[subscript 2] emissions. Thermal-swing separation technologies based on wet chemical scrubbing show potential for facilitating CO[subscript 2] capture at industrial-scale carbon emitters; however, the total operational and capital costs resulting from the high energy consumption are prohibitive for their implementation. Electrochemically mediated processes are proposed to be the next generation of CO[subscript 2] separation technology that can enable carbon capture to be a more viable option for carbon mitigation in the near future. This technology utilizes electrochemically active sorbents that undergo significant changes in their molecular affinity for CO[subscript 2] molecules as they progress through an electrochemical cycle. This nearly isothermal separation process consumes electrical energy to facilitate effective CO[subscript 2] capture and regeneration processes under more benign conditions of sorption and desorption than in traditional continuous wet-scrubber operations. This electrically driven separation process has the potential to significantly reduce the difficulty of retrofitting CO[subscript 2] capture units to existing fossil fuel-fired power generators. The ease of installing an electrically driven separation system would also allow its application to other industrial carbon emitters. The design of such a system, however, requires careful consideration since it involves both heterogeneous electrochemical activation/deactivation of sorbents and homogeneous complexation of the activated sorbents with CO[subscript 2] molecules. Optimization of the energy efficiency requires minimizing the irreversibility associated with these processes. In this study, we use a general exergy analysis to evaluate the minimum thermodynamic work based on the system design and the electrochemical parameters of quinodal redox-active molecules. Using this thermodynamic framework, our results suggest that the proposed technology could capture CO[subscript 2] from a dilute post-combustion flue gas and regenerate CO[subscript 2] at 1 bar with high efficiency, if a two-stage design is effectively implemented.Siemens Corporation (Massachusetts Institute of Technology. Center of Knowledge Interchange Project Fund

    Gene expression profile and synovial microcirculation at early stages of collagen-induced arthritis

    Get PDF
    A better understanding of the initial mechanisms that lead to arthritic disease could facilitate development of improved therapeutic strategies. We characterized the synovial microcirculation of knee joints in susceptible mouse strains undergoing intradermal immunization with bovine collagen II in complete Freund's adjuvant to induce arthritis (i.e. collagen-induced arthritis [CIA]). Susceptible DBA1/J and collagen II T-cell receptor transgenic mice were compared with CIA-resistant FVB/NJ mice. Before onset of clinical symptoms of arthritis, in vivo fluorescence microscopy of knee joints revealed marked leucocyte activation and interaction with the endothelial lining of synovial microvessels. This initial inflammatory cell response correlated with the gene expression profile at this disease stage. The majority of the 655 differentially expressed genes belonged to classes of genes that are involved in cell movement and structure, cell cycle and signal transduction, as well as transcription, protein synthesis and metabolism. However, 24 adhesion molecules and chemokine/cytokine genes were identified, some of which are known to contribute to arthritis (e.g. CD44 and neutrophil cytosolic factor 1) and some of which are novel in this respect (e.g. CC chemokine ligand-27 and IL-13 receptor α(1)). Online in vivo data on synovial tissue microcirculation, together with gene expression profiling, emphasize the potential role played by early inflammatory events in the development of arthritis

    Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)

    Get PDF
    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4–0.7 PE), acidification (–0.06 (saving)–1.6 PE), nutrient enrichment (–1.0 (saving)–3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment
    • …
    corecore