357 research outputs found

    Field equations and vector order parameter in braneworld applications

    Full text link
    Phase transitions with spontaneous symmetry breaking and vector order parameter are considered in multidimensional theory of general relativity. Covariant equations, describing the gravitational properties of topological defects, are derived. The topological defects are classified in accordance with the symmetry of the covariant derivative of the vector order parameter. The abilities of the derived equations are demonstrated in application to the brane world concept. New solutions of the Einstein equations with a transverse vector order parameter are presented. In the vicinity of phase transition the solutions are found analytically. Comparison with the commonly used scalar multiplet approach demonstrates the advantages of the vector order parameter.Comment: Text of the plenary report by B.E.Meierovich at the International Conference "Modern problems of gravitation, cosmology, and relativistic astrophysics", Moscow, June 27 -- July 3, 2010 (RUDN-10

    Measuring Energy, Estimating Hamiltonians, and the Time-Energy Uncertainty Relation

    Get PDF
    Suppose that the Hamiltonian acting on a quantum system is unknown and one wants to determine what is the Hamiltonian. We show that in general this requires a time Δt\Delta t which obeys the uncertainty relation ΔtΔH≳1\Delta t \Delta H \gtrsim 1 where ΔH\Delta H is a measure of how accurately the unknown Hamiltonian must be estimated. We then apply this result to the problem of measuring the energy of an unknown quantum state. It has been previously shown that if the Hamiltonian is known, then the energy can in principle be measured in an arbitrarily short time. On the other hand we show that if the Hamiltonian is not known then an energy measurement necessarily takes a minimum time Δt\Delta t which obeys the uncertainty relation ΔtΔE≳1\Delta t \Delta E \gtrsim 1 where ΔE\Delta E is the precision of the energy measurement. Several examples are studied to address the question of whether it is possible to saturate these uncertainty relations. Their interpretation is discussed in detail.Comment: 12pages, revised version with small correction

    Algebraic analysis of a model of two-dimensional gravity

    Full text link
    An algebraic analysis of the Hamiltonian formulation of the model two-dimensional gravity is performed. The crucial fact is an exact coincidence of the Poisson brackets algebra of the secondary constraints of this Hamiltonian formulation with the SO(2,1)-algebra. The eigenvectors of the canonical Hamiltonian HcH_{c} are obtained and explicitly written in closed form.Comment: 21 pages, to appear in General Relativity and Gravitatio

    Yakhot's model of strong turbulence: A generalization of scaling models of turbulence

    Full text link
    We report on some implications of the theory of turbulence developed by V. Yakhot [V. Yakhot, Phys. Rev. E {\bf 57}(2) (1998)]. In particular we focus on the expression for the scaling exponents ζn\zeta_{n}. We show that Yakhot's result contains three well known scaling models as special cases, namely K41, K62 and the theory by V. L'vov and I. Procaccia [V. L'vov & I. Procaccia, Phys. Rev. E {\bf 62}(6) (2000)]. The model furthermore yields a theoretical justification for the method of extended self--similarity (ESS).Comment: 8 page

    An example of a uniformly accelerated particle detector with non-Unruh response

    Get PDF
    We propose a scalar background in Minkowski spacetime imparting constant proper acceleration to a classical particle. In contrast to the case of a constant electric field the proposed scalar potential does not create particle-antiparticle pairs. Therefore an elementary particle accelerated by such field is a more appropriate candidate for an "Unruh-detector" than a particle moving in a constant electric field. We show that the proposed detector does not reveal the universal thermal response of the Unruh type.Comment: 12 pages, 1 figur

    Fundamental solution method applied to time evolution of two energy level systems: exact and adiabatic limit results

    Get PDF
    A method of fundamental solutions has been used to investigate transitions in two energy level systems with no level crossing in a real time. Compact formulas for transition probabilities have been found in their exact form as well as in their adiabatic limit. No interference effects resulting from many level complex crossings as announced by Joye, Mileti and Pfister (Phys. Rev. {\bf A44} 4280 (1991)) have been detected in either case. It is argued that these results of this work are incorrect. However, some effects of Berry's phases are confirmed.Comment: LaTeX2e, 23 pages, 8 EPS figures. Style correcte

    Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit

    Full text link
    We report on transport and tunneling measurements performed on ultra-thin Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by quench condensation. The critical temperature and energy gap of the heterostructures oscillate with addition of each layer, demonstrating the validity of the Cooper limit model in the case of multilayers. We observe excellent agreement with a simple theory for samples with layer thickness larger than 30\AA . Samples with single layers thinner than 30\AA deviate from the Cooper limit theory. We suggest that this is due to the "inverse proximity effect" where the normal metal electrons improve screening in the superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure

    Adiabatic following criterion, estimation of the nonadiabatic excitation fraction and quantum jumps

    Full text link
    An accurate theory describing adiabatic following of the dark, nonabsorbing state in the three-level system is developed. An analytical solution for the wave function of the particle experiencing Raman excitation is found as an expansion in terms of the time varying nonadiabatic perturbation parameter. The solution can be presented as a sum of adiabatic and nonadiabatic parts. Both are estimated quantitatively. It is shown that the limiting value to which the amplitude of the nonadiabatic part tends is equal to the Fourier component of the nonadiabatic perturbation parameter taken at the Rabi frequency of the Raman excitation. The time scale of the variation of both parts is found. While the adiabatic part of the solution varies slowly and follows the change of the nonadiabatic perturbation parameter, the nonadiabatic part appears almost instantly, revealing a jumpwise transition between the dark and bright states. This jump happens when the nonadiabatic perturbation parameter takes its maximum value.Comment: 33 pages, 8 figures, submitted to PRA on 28 Oct. 200

    Nature of the vortex-glass order in strongly type-II superconductors

    Full text link
    The stability and the critical properties of the three-dimensional vortex-glass order in random type-II superconductors with point disorder is investigated in the unscreened limit based on a lattice {\it XY} model with a uniform field. By performing equilibrium Monte Carlo simulations for the system with periodic boundary conditions, the existence of a stable vortex-glass order is established in the unscreened limit. Estimated critical exponents are compared with those of the gauge-glass model.Comment: Error in the reported value of the exponent eta is correcte

    Tricritical Behavior of Two-Dimensional Scalar Field Theories

    Full text link
    We compute by Monte Carlo numerical simulations the critical exponents of two-dimensional scalar field theories at the λϕ6\lambda\phi^6 tricritical point. The results are in agreement with the Zamolodchikov conjecture based on conformal invariance.Comment: 13 pages, uuencode tar-compressed Postscript file, preprint numbers: IF/UFRJ/25/94, DFTUZ 94.06 and NYU--TH--94/10/0
    • …
    corecore