40 research outputs found

    Two-step interpretable modeling of Intensive Care Acquired Infections

    Get PDF
    We present a novel methodology for integrating high resolution longitudinal data with the dynamic prediction capabilities of survival models. The aim is two-fold: to improve the predictive power while maintaining interpretability of the models. To go beyond the black box paradigm of artificial neural networks, we propose a parsimonious and robust semi-parametric approach (i.e., a landmarking competing risks model) that combines routinely collected low-resolution data with predictive features extracted from a convolutional neural network, that was trained on high resolution time-dependent information. We then use saliency maps to analyze and explain the extra predictive power of this model. To illustrate our methodology, we focus on healthcare-associated infections in patients admitted to an intensive care unit

    Learning models for classifying Raman spectra of genomic DNA from tumor subtypes

    Get PDF
    An early and accurate detection of different subtypes of tumors is crucial for an effective guidance to personalized therapy and in predicting the ability of tumor to metastasize. Here we exploit the Surface Enhanced Raman Scattering (SERS) platform, based on disordered silver coated silicon nanowires (Ag/SiNWs), to efficiently discriminate genomic DNA of different subtypes of melanoma and colon tumors. The diagnostic information is obtained by performing label free Raman maps of the dried drops of DNA solutions onto the Ag/NWs mat and leveraging the classification ability of learning models to reveal the specific and distinct physico-chemical interaction of tumor DNA molecules with the Ag/NW, here supposed to be partly caused by a different DNA methylation degree

    Learning models for classifying Raman spectra of genomic DNA from tumor subtypes

    Get PDF
    An early detection of different tumor subtypes is crucial for an effective guidance to personalized therapy. While much efforts focus on decoding the sequence of DNA basis to detect the genetic mutations related to cancer, it is becoming clear that physical properties, including structural conformation, stiffness, and shape, as well as biological processes, such as methylation, can be pivotal to recognize DNA modifications. Here we exploit the Surface Enhanced Raman Scattering (SERS) platform, based on disordered silver coated--silicon nanowires, to investigate genomic DNA from subtypes of melanoma and colon cancers and to efficiently discriminate tumor and healthy cells, as well as the different tumor subtypes. The diagnostic information is obtained by performing label--free Raman maps of the dried drops of DNA solutions onto the Ag/NWs mat, and leveraging the classification ability of learning models to reveal the specific and distinct interaction of healthy and tumor DNA molecules with nanowires
    corecore