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ABSTRACT

We present a novel methodology for integrating high resolution longitudinal data with the dynamic
prediction capabilities of survival models. The aim is two-fold: to improve the predictive power
while maintaining interpretability of the models. To go beyond the black box paradigm of artificial
neural networks, we propose a parsimonious and robust semi-parametric approach (i.e., a landmark-
ing competing risks model) that combines routinely collected low-resolution data with predictive
features extracted from a convolutional neural network, that was trained on high resolution time-
dependent information. We then use saliency maps to analyze and explain the extra predictive power
of this model. To illustrate our methodology, we focus on healthcare-associated infections in patients
admitted to an intensive care unit.

Keywords Landmarking Approach, Convolutional Neural Networks, Dynamic Prediction, ICU Acquired Infections,
Saliency Maps.
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Two-step interpretable modeling of ICU-AIs

1 Introduction

Although Artificial Neural Networks (ANNs) are very accurate predicting tools if compared to more conventional
survival models (Topol, 2019; Zeng et al., 2022; Ivanov et al., 2022), they are often seen as black boxes. ANN models
are indeed very difficult to interpret and it is challenging to identify which predictors are the most relevant (May
et al., 2011). In contrast, semi-parametric hazard based survival models (Andersen et al. (1993)) are examples of
interpretable models, whose hazards can measure (directly or indirectly) the effect of each covariate on the outcome
of interest.

In order to properly model the temporal evolution of the survival process, including longitudinal information (e.g.,
biomarkers, health status, clinical measurements) as time-dependent covariates is often informative. These covariates
are usually internal and they require extra modeling to predict survival functions accurately (Cortese and Andersen,
2010). The use of Joint Modeling (JM), that attempts to jointly model the longitudinal covariates and the event time,
might be then a natural choice (Proust-Lima and Taylor, 2009; Rizopoulos, 2011, 2012). Despite JMs efficiently
estimate the underlying parameters when the model is correctly specified, they are sensitive to misspecification of the
longitudinal trajectory (Ferrer et al., 2019) and they are complex to estimate.

For these reasons, we consider a Landmarking (LM) approach for the dynamic prediction of the outcome of interest
(e.g., intensive care unit acquired infections). LM is indeed a pragmatic approach that avoids specifying a model for the
longitudinal covariates and it is robust under misspecification of the longitudinal processes (Van Houwelingen, 2007;
van Houwelingen and Putter, 2011). The main idea behind LM is to select a point in time s known as a landmark.
By selecting subjects at risk at s (i.e., left-truncation at time s) and by imposing administrative right-censoring at time
s+w (horizon time), a landmark dataset is then constructed. Thus, for a time-dependent covariate Z(t), only the value
Z(s) at s is considered, so that the resulting LM dataset can be analyzed by using standard methods: Z(s) is indeed
treated as a time constant covariate. In case of competing events, the LM approach can be generalized to Competing
Risks model (LM-CR), see Nicolaie et al. (2013).

The novelty of the manuscript is the inclusion in the LM-CR model of time-dependent information coming from high-
resolution Electronic Health Record (EHR) data: vital signals recorded in the Intensive Care Unit (ICU) monitors and
sampled every minute (i.e., heart rate, mean arterial blood pressure, pulse pressure, arterial oxygen saturation, and
respiratory rate). A type of deep neural network, a Convolutional Neural Network (CNN), that looks for predicting
patters present in the signals prior the landmark time s, is used as features’ extractor to be included in the main
LM-CR model. We hypothesize indeed that these patterns represent additional information, not contained in the
lower-resolution covariates.

Although the LM-CR is in itself an interpretable model, we would like to interpret the additional predicting power of
the CNN score in terms of medical conditions of the patients. Hence, we study the pattern recognition performed by
the CNN, and make it interpretable via a Saliency Map Order Equivalent (SMOE) scale (Mundhenk et al., 2019), an
algorithm that describes the statistics of the activated feature maps of the hidden layers of the network. By the SMOE
scale we can visualize the regions of the input data with the highest saliency for the prediction. Hence, we extract
subsets of the signal with the highest cumulative saliency, in order to perform a data-driven clustering of patients who
are more likely to experience the outcome in the fore-coming prediction window. This approach represents a proof of
concept for future applications of our method.

In order to illustrate the methodology, we focus on healthcare-associated infections in patients admitted to an ICU,
where they are a major cause of morbidity and mortality (Vincent et al., 2009; Maki et al., 2008). Therefore, early
identification of infectious events could help physicians in the prevention and management of infectious complications
in the ICU (Dantes and Epstein, 2018). Moreover, the dynamic prediction of nosocomial infections is a modeling
challenging task. In fact, the establishment of the presence of infection is not straightforward, and the exact time of
infection onset cannot be directly observed. Hence, a method that can predict an approaching infection, might give to
the partitioners valuable lead time to intervene.

The structure of the paper is the following. In Section 2 we describe the data and we define the outcome we want to
predict; in Section 3 we introduce the two-step modeling approach; in Section 4 we explain the design of the CNN,
its training and the risk score’s extraction. In Section 5 we define and fit the LM-CR model with the inclusion of
the risk score extracted by the CNN. Finally, in Section 6 we perform a data-driven clustering based on the SMOE
scale analysis of the EHR instances. The Supplementary material file contains further information about the data, the
selection of the design of the CNN, and a more detailed explanation of the SMOE scale used in the paper.
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2 The data

We analysed data from the Molecular Diagnosis and Risk Stratification of Sepsis (MARS)-cohort (Klouwenberg et al.,
2013). We selected patients>18 years of age having a length-of-stay>48 hours, who had been admitted to the ICU of
one of the participating study centres between 2011 and 2018. In addition, we also used high-resolution data streams
from vital signs monitors which had been recorded in the hospital information system at a 1-minute resolution.

As the outcome parameter for our primary modeling attempt we used the onset of a first occurrence of a suspected ICU-
AI within a 24-hour time-window from the moment of prediction. Time of infection onset was determined by either
the start of new empirical antimicrobial treatment or the sampling of blood for culture (subsequently also followed by
antibiotic therapy), whichever occurred first. The dataset thus consisted of 5075 ICU admissions in which 871 first
cases of suspected Intensive Care Unit Acquired Infections (ICU-AIs) occurred. Importantly, the incidence of ICU-AI
remained relatively constant across ICU stay at a mean rate of 0.04 (SE 0.01) events per day during the first 10 days
in ICU. Median time of onset was 5.25 (IQR 3.80-9.45) days following admission.

We selected candidate predictors among several variables based on literature review, a priori consensus of clinical
importance, and prevalence in the study population. These covariates include both time-fixed variables reflecting the
baseline risk of infection, as well as time-dependent data representing the dynamics of the clinical evolution of patients
over time, e.g., laboratory values and physiological response and organ function parameters; see Table 1 and Table 2
in Section 1 of the Supplementary Material.

3 Two-step modeling strategy

In order to take advantage of all longitudinal clinical data and to include observations with different temporal resolu-
tions, we designed our model by means of a two-step modeling approach. In particular:

Step 1: We first use a CNN to investigate the longitudinal evolution of EHR data. In our case, the EHR data are
high-frequency vital signals, recorded in the ICU monitors with a sampling frequency of 1 minute. The CNN
will derive a risk score of infection (or more simply risk score), to be added to the predictors of Step 2. This
extra risk score predictor is obtained by processing those patterns in the EHR signals that are linked to the
onset of ICU-AI.

Step 2: We develop and fit a LM-CR model, including all the explanatory variables: the baseline covariates (e.g, sex,
age, ICU admission type, and admission comorbidities); the low-frequency predictors (e.g., consciousness
score, laboratory measurements, and bacterial colonization) and the risk score fitted by the CNN.

Therefore, we consider the CNN outputs as extra condensed information about the approaching of the infectious
episode. Note that the CNN score is based only upon the analysis of the vital signs signal data.

4 Step 1: CNN at work

4.1 Selection of high-frequency instances

With the term high-frequency covariates, we refer to five vital signs signals: Heart Rate (HR), mean Arterial Blood
Pressure (ABP), pulse pressure, saturation (SaO2), and Respiratory Rate (RR). These predictors are sampled with a
sampling rate equal to one minute and they are arranged like a time-series (e.g., 1440 observations for a time window
of 24 hours).

We selected and extracted the time-series instances as follows:

1. We first remove the last 24 hours of records for all patients who died during the stay.
2. Starting from admission time τ i0 of the patient i, we partition all physiological vital signals time-series into

time windows of width w = 24 hours until the final time T i` of the patient record (defined as in point 1 for
the patients who died during the stay). Therefore, we obtain the set of intervals Pi for the patient i:

Pi :=
⋃

k≥1

{
[τ i0 + (k − 1)w,min(τ i0 + kw, T i` )]

}

We define the set of time windows shifted by δ as:

Pδi :=
⋃

k≥1

{
[τ i0 + δ + (k − 1)w,min(τ i0 + δ + kw, T i` )]

}
,
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[τ0, τ0 + w] [τ0 + w, τ0 + 2w] [τ0 + 2w, τ0 + 3w] [τ0 + 3w, τ0 + 4w] [τ0 + 4w, T`]

τ0 τ0 + w τ0 + 2w τ0 + 3w τ0 + 4w T`

[τ0 + δ, τ0 + δ + w] [τ0 + δ + w, τ0 + δ + 2w] [τ0 + δ + 2w, τ0 + δ + 3w] [τ0 + δ + 3w, T`]

τ0 + δ τ0 + δ + w τ0 + δ + 2w τ0 + δ + 3w τ0 + δ + 4w ≡ T`

[τ0 + 2δ, τ0 + 2δ + w] [τ0 + 2δ + w, τ0 + 2δ + 2w][τ0 + 2δ + 2w, τ0 + 2δ + 3w]

τ0 + 2δ τ0 + 2δ + w τ0 + 2δ + 2w τ0 + 2δ + 3w T`

[τ0 + 2δ + 3w, T`]

P

Pδ

P2δ

Figure 1: Example of time windows selected for one patient.

provided that T i` ≥ τ i0 + δ. Hence, the time windows selected for the patient i are the one belonging to the
set P total

i := Pi ∪ P8hrs
i ∪ P16hrs

i , see Figure 1. The collection of the time windows in P total
i (i.e., consecutive

windows of 24 hours and their translations of 8 and 16 hours), allows to chunk the longitudinal evolution
of the signals coherently with the way we extracted the low-frequency time-dependent covariates of Step 2.
We shall refer to the portion of the vital signs signals corresponding to an interval in P total

i with the term
time-series instance.

3. Per each patient i who has not acquired an infection during the stay in the ICU, we call not-infected instances
all the instances whose time windows are in P total

i .
4. For each patient i who has acquired an infection during the stay in the ICU, we first divide the complete ICU

as in point 2 (P total
i ). We then label all time-windows where an ICU-AI event has occurred as an outcome

event (i.e., the time-window includes the time-stamp at which the ICU-AI episode has been recorded). In
addition, we also label all the time windows preceding a time-window containing the onset of an ICU-AI
event as outcome events. All remaining time windows are treated as non-infected.

5. We only consider the first ICU-AI and we discard all the other recurrent episodes from the same patient.
Thus, all the instances following the first infection are discarded.

6. We equip each time-series instance with an extra time-series, monitoring the presence of missing values: in
this way we can track the missing records at each time stamp.

Hence, each time-series instance can be described by a 6 × 1440 matrix, whose rows represent the type of time-
series features (i.e., HR, ABP, pulse pressure, SaO2, BR and missing records) and the columns the time domain. The
illustration of one sample time-series instance is shown in Figure 2.

Missing values of vital signs signals have been imputed by using a zero-order spline, i.e., the Last Occurrence Carried
Forward (LOCF) method. The inclusion of the missing values time-series helps the CNN to recognize the correct
informativeness of flat patterns, i.e., whether a flat pattern is due to the LOCF method or not. We remark that our
choice of 24-hour time window is only for the sake of illustrating the methodology. The analysis can be repeated with
any window width (as done in Section 2 of the Supplementary material). However, the larger is the prediction window,
the larger the dimensionality of the input data.

4.2 Design of the CNN

The CNN represents a specific class of Artificial Neural Networks (ANNs) which is designed to work with grid-
structured data, e.g., time-series and images. Due to this intrinsic ability to process multi-level data, CNN have been
widely applied in image recognition (Liu, 2018; Zheng et al., 2017; Lou and Shi, 2020; Kagaya et al., 2014), anomaly
detection (Kwon et al., 2018; Naseer et al., 2018; Staar et al., 2019), and time-series forecasting (Borovykh et al.,
2017; Selvin et al., 2017; Livieris et al., 2020; Guo-yan et al., 2019). More specifically, convolutional and max-
pooling operators are combined to encode the sequentiality of the patterns contained in the input data. As a result,
the optimization of the weights of the convolutional filters of the convolutional layers aims to give the most linearized
latent representation of the input time-series.

In the present work we have chosen a pure convolutional network: its architecture is composed of convolutional,
pooling, and dense layers only. The choice of a CNN seems natural, since we are looking for translational invariant
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Figure 2: Example of time-series instance. x-axis: time-domain (24 hours). y-axis: the values taken by each time-
series feature. In specific, HR in blue, ABP in orange, pulse pressure in green, SaO2 in red, BR in purple, and the
auxiliary time-series (with the missing values incidence) in brown.

 Input

Convolutional + ReLU Maxpooling
Dropout

Flatten Dense  
     +  
Sigmoid

Output

Figure 3: Schematic illustration of the CNN model. Starting from the left, the input signal is processed by a convolutional layer
(128 filters of size 3). The a ReLU function is applied before a max-pooling operator that reduces the size of the features. After
each max-pooling layer the network also contains a dropout layer whose dropout rate is 0.25. This sequence of hidden layers is
repeated five times. The last feature map is flattened into an array and then propagated in a fully-connected layer (dense layer) with
a sigmoid activation function.
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patterns that might be present in any sub-interval in the time-series. However, in order to give quantitative grounds to
this reasoning, in Section 2 of the Supplementary Material we compare CNN’s accuracy with other traditional NN-
based models, namely Logistic Regression (LR), linear Supported Vector Machine (SVM), Multi Layer Perceptron
(MLP), and CNN-LSTM networks (where LSTM stands for Long Short-Term Memory). We opted for a CNN design,
due to its accuracy and to the possibility of applying the saliency maps analysis, presented in Section 6.

The final architecture chosen for the CNN is the following:

1. Convolutional Layers: the number of filters on each layer is 128, and each filter has a size of 3 (pixels). We
call a feature map the output of a filter applied to the previous layer.

2. Activation Layer: the ReLU function (i.e. ReLU(x) := max(0, x)) is applied after each convolution operator.
This application of a non-linear activation function on the feature maps gives rise to the activated feature
maps.

3. Max-pooling layer: the activated feature maps are resampled via a max-pooling operator with a pooling size
of 2 (sub-sampling).

The architecture also contains a dropout layer after each max-pooling layer. The dropout layer has a dropout rate
of 0.25. This sequence of hidden layers is repeated five times. The last feature map is flattened into an array and
then propagated into a fully-connected layer (dense layer) with a sigmoid activation function. The activation function
returns a positive output between 0 and 1, that is, the risk score evaluated by the CNN. The architecture of the chosen
CNN is sketched out in Figure 3. The figure is created by using the on-line tool ENNUI (https://math.mit.edu/ennui/).

4.3 Training and overall evaluation of the CNN

When training the model with the input EHR data, we used only a portion of the total amount of available EHR
data. Indeed, we under-sampled the overall amount of EHR data to avoid both the training and the test set being
too imbalanced. The number of time-series instances in the case group (i.e., those instances representing the ICU-
AI episodes) are about one-twentieth of the total amount of time-series instances in the control group (i.e., those
instances not representing the ICU-AI episodes). Thus, we fit the CNN model on a population of time-series instances
with a control-case ratio of 8:1 (i.e., for each time-series instance in the case group one has eight time-series instances
from the control group). It is important to stress that when under-sampling the EHR data, we apply a random under-
sampling on the control group only. We use binary cross-entropy for the loss function, and the ADAM algorithm as
the optimizer (Kingma and Ba, 2015).

Since we train the CNN to solve a binary classification task, the Area Under the Receiver Operating Characteristic
curve (AUROC) score (Fawcett, 2006) represents the most appropriate choice for assessing the performance during the
learning phase. Although we are not interested in the prediction formulated by the CNN in itself, we need to guarantee
that the CNN model is able to classify the time-series instances and to encode informative patterns that describe the
impending onset of an ICU-AI. Internal validation was performed using the K-folds cross-validation method. When
validating the performance of CNN models as binary classifiers, the data were split into 5 folds. The overall AUROC
is the average over the 5 folds. In Figure 3 of the Supplementary material the reader can find the behavior of the
AUROC of the CNN model as function of three hyper-parameters of the network.

4.4 CNN Risk score

The extraction of the CNN score and its inclusion in the LM-CR model represent the novel ideas of the manuscript.
The risk score of infection is evaluated by means of the CNN, whose architecture was discussed in Section 4.2 and its
training in Section 4.3.

Thus, the procedure for evaluating the risk scores is the following:

1. Consider the vital signs signals of patient i (HR, ABP, pulse pressure, SaO2, and RR) and the missing values
time-series.

2. Starting from ICU admission time, extract 24-hour time-series instances by means of an 8-hour sliding time
window (see Section 4.1), corresponding to the intervals in Pi.

3. Propagate the time-series instances through the hidden layers of the fitted CNN model and evaluate the risk-
score.

4. Assign the risk score to the corresponding time-stamp (i.e., day-month-hour-minute).

6
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Figure 4: Schematic representation of the inclusion of the CNN-based risk score ZCNN(tLM ) in the ICU cohort data.

A scheme of how we incorporated the risk score into the ICU predictors is illustrated in Figure 4: for a single patient
the score is calculated for each LM time tLM . At each tLM the values of other time-dependent covariates are reported
as well (e.g., CRP, FiO2, creatinine level, mean blood pressure, mean heart rate).

5 Step 2: Deep LM-CR model

5.1 Notations and LM-CR model

In this Section, we shall present the LM model following the notation used in Nicolaie et al. (2013).

We consider a cohort consisting of N subjects, and we denote with T̃ the time of failure, C the censoring time,
D the cause of failure, and Z(·) and array of covariates. For the i-th subject, the tuple (Ti,∆i,Zi(·)) represents
respectively the observed time Ti = min (T̃i, Ci) (i.e., the earliest of failure and censoring time), the cause of failure
∆i = 1(T̃i < Ci)Di (with 1(·) the indicator function), and Zi(·) the covariates up to time Ti. Likewise, we shall
adopt the subscript j to refer to the competing causes of failure, with j ∈ {1, . . . , J}.
We would like to derive a dynamic prediction of the probability distribution function of the failure time of cause j at
some time horizon (thor), conditional on surviving event free and on the information available at a fixed time tLM
(landmark time). More specifically, given a prediction window w (such that thor = tLM + w) we would like to
estimate the survival probability and the Cumulative Incidence Function (CIF) of cause j:

SLM (thor|Z(tLM ), tLM ) := P(T > thor|Z(tLM ), tLM ), (1)

Fj,LM (thor|Z(tLM ), tLM ) := P(T ≤ thor,∆ = j|Z(tLM ), tLM ). (2)

The LM approach consists of two steps:

1. We first divide the time domain of our observations [s0, s1] into n equi-spaced landmark points denoted with
{tkLM}nk=1, where t1LM ≡ s0 and tnLM ≡ s1. Hence, we fix the width of the prediction window w (i.e.,
the lead time), and then for each LM time tkLM we create a dataset by selecting all the subjects at risk at
time tkLM and by imposing administrative right-censoring at the time tkLM + w (horizon time). Thus, for a
vector of time-dependent covariates Z(t), only the values Z(tkLM ) at tkLM are considered in the k-th dataset.
Finally, we create an extensive dataset by stacking all the datasets extracted at each landmark time tkLM (LM
super-dateset).

2. The second step is fitting the LM-CR super-model on the stacked LM super-dateset (Nicolaie et al., 2013).
Since at each tkLM , the vector Z(tkLM ) is treated as a time constant vector of covariates, the dataset can be
analyzed by using standard survival analysis methods.
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No ICU-AI

1. ICU-AI

2. Death/Discharge

Figure 5: Competing risks model for ICU-AI.

In the LM-CR super-model we fit indeed a Cox proportional hazard model for the cause specific hazard λj :

λj(t|tLM ,Z(tLM )) = λ0j(t|tLM ) exp [βTj (tLM )Z(tLM )], (3)

where λ0j(t|tLM ) denotes the (unspecified) baseline hazards and βj(tLM ) the set of regressors specific for the j-th
cause in within the interval interval [tLM , tLM + w]. We assume that the coefficients β depend on tLM in a smooth
way, i.e., βj(tLM ) = fj(tLM , β

(0)
j ) with β(0)

j a vector of regression parameter and fβ(·) a parametric function on
time, e.g., a spline. Our choice has been a quadratic function:

βj(tLM ) := β
(0)
j + β

(1)
j tLM + β

(2)
j t2LM

Fitting this model with the Breslow partial likelihood for tied observations is equivalent to maximizing the pseudo-
partial log-likelihood as shown in (Nicolaie et al., 2013). The landmark supermodel can be then fitted directly by
applying a simple Cox model to the stacked data set. Hence, after having estimated the coefficients and the baseline
cause specific hazards, we get the plug-in estimators for the survival probabilities (i.e., ŜLM (thor|Z(tLM ), tLM )) and
of the CIF of cause j (i.e., F̂j,LM (thor|Z(tLM ), tLM )).

5.2 LM-CR for ICU-AI

In the context of dynamic predictions for ICU-AIs, we adopted a CR model with three causes of failure: ICU-AI, death
in the ICU and discharge; see Figure 5. No right censoring is present in the data, since no patient left the ICU before
discharge or death.

Following the notation used in Section 5.1, we denote with T̃ the time of failure, D the cause of failure (i.e., D = 1
denotes an ICU-AI, while D = 2 discharge or death), and Z(·) the array of covariates. For the i-th subject the triple
(Ti,∆i,Zi(·)) denotes the observed time Ti ≡ T̃i, the cause of failure ∆i ≡ Di, and Zi(·) the vector of covariates.

In this article, we consider the prediction window was set to w = 24 hours. The time domain is [s0, s1], with s0 = 48
hours and s1 = 240 hours, and we consider n = 25 LM times tLM , i.e., two subsequent LM times are at distance 8
hrs.

If we denote with ZCNN(t) the CNN risk score at time t (see Figure 4) and with Z(t) the vector of all the other
covariates in the LM-CR model at time t, we are interested at the dynamic predictions of the two models:

1. π1 := F1,LM (thor|Z(tLM ), tLM ): i.e., the CIF of infection conditioned on the survival up to time tLM and
on the low frequency covariates (LM-CR model);

2. π2 := F1,LM (thor|Z(tLM ), ZCNN(tLM ), tLM ): the CIF of infection conditioned on the survival up to time
tLM and on both the low frequency covariates and ZCNN (Deep-LM-CR model).

By comparing the accuracies of π1 and π2, we can measure the added predictive power of the CNN score. We shall
refer at the first model with LM-CR and to the second with Deep-LM-CR.

5.3 Evaluation of LM-CR model

We use the AUROC metric to evaluate the prediction made at each single landmark time. When considering an overall
measure, the evaluation of a global AUROC needs to consider the time-dependent character of the dynamic. Similarly
to the estimator of the prediction error proposed in Spitoni et al. (2018), the evaluation of the overall AUROC needs
to take into account the change in time of the size of the risk-set. The absence of censoring allows us to estimate the
overall AUROC score simply by:

AUROCglobal =

∑n
k=1R(tkLM ) AUROC(tkLM )∑n

k=1R(tkLM )
, (4)
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Figure 6: Distribution of the CNN risk score at three different landmark points (tkLM ∈ {3, 6, 8} days), stratified for
the cause of failure.

with tkLM the k-th landmark time, n the total number of landmark times, and R(tkLM ) the size of the risk-set at time
tkLM .

The influence of the individual predictor in the prediction has been visualized by means of heat-maps. We compute the
relative variation of the overall AUROC between the model including all predictors and the one where the predictor
is removed. Thus, we construct a heat-map representing the relative change in AUROC due the removal of a single
predictor at landmarking time tLM .

Finally, we remark that internal validation was performed using a 10-folds cross-validation method. The overall
AUROCglobal and the AUROC(tkLM ), evaluated at each time tkLM , are averaged over the 10 folds. In both the
CR-LM model and the Deep-CR-LM model, we report 95% bootstrap confidence intervals.

5.4 Results

In this Section we are going to show that the CNN risk score ZCNN adds extra predictive information to the model, not
present in the standard covariates.

In Figure 6 we plotted the empirical distribution of ZCNN(tLM ) for three landmark points (i.e., tLM ∈ {3, 6, 8}) and
stratified by the cause of failure. As expected, the distribution of ZCNN for infected patients is more skewed on the
right: while at day three this phenomenon is mild, at days 6 and 8 the skewness of the density distribution is much
more evident.

In Figure 7 we report the Pearson correlations between the CNN risk score and the vital signals averaged in the 24hrs
time windows prior the landmark (time-dependent covariates included in the LM-CR). Although the risk score is
evaluated relative to these signals, only mild correlations are present. Our main hypothesis is indeed that ZCNN (tLM )
has added predictive information, not contained in the other covariates Z(tLM ).

Moreover, with regards to the cause specific hazards for infection, the CNN risk score turned out to be the most
important predictor: β(0)

1;CNN = 4.8 (95%CI 3.05-6.72). All the cause-specific hazards for ICU-AI are reported in
Table 3 of the Supplementary Material.

The LM approach provides a plug-in estimator for the dynamic prediction (2) of the CIFs of ICU-AI. Therefore, in
order to give an example of the dynamic prediction allowed by the model, in Figure 8 we report the CIFs for the
LM-CR and the Deep-LM-CR models as function of the landmark time and of the quantile groups of the fitted linear
predictors. Given the value of the covariates at the landmark time tLM , the CIF at any s, with s ∈ [tTM , tLM + w]

is given indeed by the plug-in estimator F̂1,LM (s|Z(tLM ), tLM ) of (2). The dashed red line in Figure 8 denotes an
arbitrary warning level for the CIF of infection (e.g., 8%). We can see that, for the forth quantile Q4 and at LM time
tLM = 4 days, the Deep-LM-CR model has a lead time of circa 3 hours in reaching the warning threshold before the
LM-CR model.
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Figure 7: Correlation plot: CNN risk score vs. the vital signals (averaged in the 24 hours before the landmark).

The overall measure for the LM-CR model is AUROCglobal = 0.69 (95%CI 0.68-0.70), while for the Deep-LM-
CR is AUROCglobal = 0.75 (95%CI 0.73-0.76). The AUROC(tkLM ) scores evaluated at each time tkLM , with k ∈
{1, . . . , n} are shown in Figure 9. The LM-CR model always shows lower predictive performance than the Deep-LM-
CR. We notice that at the beginning of the ICU stay (days 3-4) and around day 7, the CNN can improve the prediction
of the traditional ICU clinical covariates of about 8%, see Figure 10.

The impact of each explanatory variable Zj involved in the Deep-LM-CR model is shown in Figure 11, whereas we
reported the heat-map of the relative increase in AUROC between the Deep-LM-CR without the covariate Zj and
the full model (with Z(tLM ) and ZCNN (tLM )). When Zj = ZCNN , we see that we observe a relative increase in
AUROC of at least 4%.

Summing up, we have shown that the two-step modeling can effectively lead to an increase of the accuracy of the
predictions. The extra predicting power comes from the inclusion of the CNN-based risk score, which is a summary
measure of the predicting patterns found by the CNN model trained on only five vital signs signals (sample frequency
of 1 minute).

We remark that in our analysis we did not consider recurrent infections, but we limited the attention to the first episode
of ICU-AI.

6 Explainability of CNN-based prediction of ICU-AI

In this section, we present an attempt to make interpretable the activity of the CNN. As shown in Section 5.4, the
CNN-based risk score has added predicting power to the LM-CR model. However, for the moment, we do not have
any information about the saliency of the vital signs signals selected by the CNN during the training. This knowledge
might be crucial for shedding some light on the relation between the activity of pattern recognition of the network and
the medical conditions of a patient when a ICU-AI is approaching.

To investigate which characteristics of the pattern selected by the CNN, we use the so-called Explainable Artificial
Intelligence (XAI), namely a class of methods designed to understand the decisions and the predictions formulated by
ANN techniques (Phillips et al., 2020; Vilone and Longo, 2021; Castelvecchi, 2016). The scope of XAI is to contrast
indeed the widespread black box attitude that many users have when applying ANN techniques.
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Figure 8: Comparison of the CIFs at different landmark time (i.e., tkLM ∈ {2, 4, 6, 8} days) of the models LM-CR and
Deep-LM-CR.

6.1 Explanability via SMOE scale

A saliency map is a map acting on the activated features in the hidden layers, generally used for showing which parts
of the input are most important for the network’s decisions. The Saliency Map Order Equivalent scale (SMOE) used in
the present paper is base on the algorithm developed by Mundhenk et al. (2019): an efficient and non-gradient method
based on the statistical analysis of the activated feature maps. For a more detailed description of the SMOE scale, we
refer the reader to Section 3 of the Supplementary Material.

We would like to use the saliency maps for selecting, in the original 24hrs time-series, the most relevant 8-hours
patterns.

The adopted approach is the following:

1. We fit three different CNNs, one for each of tkLM ∈ {3, 7, 10}. We consider three distinct CNNs because
the predicting patterns found by the network might differ among different periods of the ICU stay (see for
instance the discussion in Section 6.3). The LM point 3 days is a proxy for an early time of the stay, 7 days
for an intermediate time, and finally 10 days for a later moment. The design of the networks is the same as
described in Section 4.2. All these models are validated via 5-fold cross-validation.

2. We study the pattern recognition performed by the hidden layer, and we make it interpretable via the SMOE
scale. Through this method, we can visualize the regions of the input data with the highest saliency. Specifi-
cally, for each model developed at every LM time tkLM , we construct and visualize the saliency maps of the
test set only. We repeat this action for each test set of each cross-validation fold.
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Figure 9: AUROC score (y-axis) as a function of the landmark times (x-axis). The two curves represent the predictive
performance of the basic CR-LM model (orange), and of the Deep-CR-LM model (blue) The error bars denote the
95% bootstrap confidence intervals.
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Figure 10: ICU-AI: overall relative increase of AUROC score (y-axis) as a function of the landmark times (x-axis)
when including CNN-based risk score.
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Figure 11: AUC heat-maps evaluating the impact of each predictor in the Deep-LM-CR model when predicting ICU-
AI. The color of each pixel denotes the magnitude of the impact (relative AUROC increase) of one covariate (y-axis)
with respect to the LM time (x-axis).

3. From each saliency map, we extract the 8-hours interval with the highest cumulative saliency value. After
having extracted the most relevant 8-hour patterns from each time-series instance, we can focus on their
interpretation and their clustering. An example of the extraction of the 8-hours most salient pattern is shown
in Figure 12.

6.2 Data-driven clustering of salient patterns

We focus now the attention on the clustering of the most salient patters extracted in Section 6.1. We would like indeed
to answer the question: how can we link the activity of pattern recognition to some medical conditions, appearing
when a ICU-AI is approaching? Our strategy for answering the question is the following:

1. We collect the set of the most predictive patterns with amplitude 8 hours, obtained by applying the SMOE
scale to the time-series instances, as explained in Section 6.1.

2. We consider four clinical critical conditions, i.e., tachycardia, hypotension, desaturation, and hyperventila-
tion (see Table 1), which could predict the approaching of one ICU-AI episode. These medical conditions
reflect the main symptoms of the Systemic Inflammatory Response Syndrome (SIRS), see Chakraborty and
Burns (2019). Tachycardia, hypotension, and hyperventilation are quite spread in the ICU, and they usually
mentioned in general guidelines for the ascertainment of SIRS (Comstedt et al., 2009). For the criteria re-
ported in Table 1 we refer to Comstedt et al. (2009); in specific for Desaturation, we refer to (Hafen and
Sharma, 2022).

3. We evaluate the mean values of HR, ABP, SaO2 and BR for each of the most salient 8-hour pattern extracted
via the SMOE scale. Depending on the values obtained (see the criteria in Table 1), we check the presence of
the four clinical critical conditions. Thus, the combination of these conditions produces 16 different possible
clinical situations of interest, as shown in Table 2: they represent the classes of the proposed data-driven
clustering. In Figure 13 the 16 distinct classes are represented as nodes of a graph (i.e., a four dimensional
hypercube).

6.3 Results of the data-driven clustering

Histograms with the relative frequencies of the 16 data-driven clusters are shown in Figure 14. For day 3 (see Fig-
ures 14(a) and 14(b)), a two-sample Kolmogorov-Smirnov test (Hodges, 1958) reveals that the sample distributions
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(a) (b)

(c)

(d)

Figure 12: Schematic example of the extraction of the most salient patterns in the 24-hours time-series instances: (a)
Example of time-series instance, (b) SMOE scale applied on each activation feature map of the CNN, (c) Averaged
saliency map (weighted average of SMOE scales on individual hidden layers), (d) extraction of the most salient interval
of (a).

Critical Condition Criterion
Tachycardia Hearth Rate ≥90 beats per minute
Hypotension Arterial Blood Pressure (mean) ≤ 80mmHg
Desaturation SaO2 ≤ 95%

Hyperventilation Breath Rate ≥ 24 breaths per minute
Table 1: Critical conditions and their criteria.
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Class Data Driven Cluster (Clinical Conditions)
0 None
1 Tachycardia
2 Hypotension
3 Hypotension, Tachycardia
4 Desaturation
5 Desaturation, Tachycardia
6 Desaturation, Hypotension
7 Desaturation, Hypotension, Tachycardia
8 Hyperventilation
9 Hyperventilation, Tachycardia

10 Hyperventilation, Hypotension
11 Hyperventilation, Hypotension, Tachycardia
12 Hyperventilation, Desaturation
13 Hyperventilation, Desaturation, Tachycardia
14 Hyperventilation, Desaturation, Hypotension
15 Hyperventilation, Desaturation, Hypotension, Tachycardia

Table 2: List of the 16 clinical conditions (classes of the clustering).

Figure 13: Graph whose nodes represent the 16 classes of the clustering.

of the classes between not-infected and infected instances are not significantly different (p-value=0.21). However, we
can observe a completely different scenario on both days 7 and 10 (see Figure 14 (d)-(f)), where the null hypothesis
of the two-samples Kolmorogov-Smirnov test is rejected (p-value= 0.0003 and p-value= 10−10 respectively). Hence,
this analysis shows that different clinical conditions could represent an essential feature of the patterns that the CNN
model captures during the learning phase. For instance, for infected instances, at day 10, the prevalence of at least one
of these 16 conditions is around 94%, while 79% at day 7; see Figure 14 (d)-(f)). Precisely, on day 10, events with
hyperventilation correspond at 70% of samples, and in combination with tachycardia 23%. While a day 7 tachycardia
is much more relevant and occurs in 50% of infectious samples. Therefore, the most salient 8-hours subinterval of our
time-series instance can be linked to precise medical conditions, which are known to be related to the presence of an
ICU-AI.

7 Conclusions

We have showed that the proposed two-step modeling of ICU-AI is at the same time an accurate predicting tool and
an interpretable model. The CNN is able to detect predicting patterns by analyzing the time-series of five vital sign
signals. These patters contain extra predictive information and they are only mildly correlated with the averaged
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Histograms the data-driven clustering approach. Bins on the x-axis represent the 16 classes. Blue his-
tograms concern the non-infected instances, whereas the red ones the infected instances. CNN trained on day 3 is
described by (a) and (b), on day 7 by (c) and (d), and on day 10 by (e) and (f).
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quantities of the vital signals, routinely included in the traditional survival models. Moreover, we have showed as well
that the SMOE scale might help physicians in clustering patients with an approaching infection.

We have illustrated the methodology in a competing risks framework. However, recently the LM approach has been
extended to multi-state models, even without the Markov assumption (Putter and Spitoni, 2018; Hoff et al., 2019).
Therefore, as a further extension we could model recurrent infections as new states in a non-Markov multi state
model, with transition hazards that might depend indeed on the previous infections’ sequence. Moreover, another
future challenging direction of investigation is a sort of inversion of the CNN, in order to identify and classify the
patterns in the signal with higher predicting power. This analysis might help in performing a more precise clustering
of the patients with fore-coming ICU-AI.

Code Availability

Python codes and modules are available on GitHub: the reader can refer to https://github.com/glancia93/
ICUAI-dynamic-prediction/blob/main/ICUAI_module.py.
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Supplementary Material
1 Data, covariates and hazards

This study was conducted within the framework of the Molecular Diagnosis and Risk Stratification of Sepsis (MARS)
study (ClinicalTrials.gov identifier NCT01905033), a prospective ICU cohort, for which the institutional review board
approved an opt-out method of informed consent (protocol number 10-056C). Time-fixed variables included in the
model are reported in Table 1, while time-dependent covariates are listed in Table 2.

Variable name Variable description
Sex Sex (male/female)
Age Age at ICU admission
Immunodeficiency Immunocompromised status; defined as having acquired immune deficiency syn-

drome, the use of corticosteroids in high doses (equivalent to prednisolone of >75
mg/day for at least 1 week), current use of immunosuppressive drugs, current use
of antineoplastic drugs, recent hematologic malignancy, or documented humoral or
cellular deficiency

Readmission Previous ICU admission during current hospitalization period
Primary specialty Diagnostic category of ICU admission (cardiovascular, gastrointestinal, neurological,

respiratory, post-transplantation, trauma, other)
Diabetes Mellitus Medical history of diabetes mellitus
Chronic corticos-
teroid use

Chronic medication use: systemic corticosteroids

Chronic organ failure Presence of chronic organ insufficiency with one of the following conditions docu-
mented in medical history:

• Chronic heart failure defined as the medical history of chronic NYHA class
2-4 or documented ejection fraction <45% (on echography in 2 years prior
to ICU admission) or orthopnea with chronic diuretic use

• Severe cardiovascular insufficiency defined as angina or dyspnea in rest or
during minimal exercise (NYHA IV)

• Chronic renal insufficiency defined as chronically elevated serum creatinine
>177 μmol/L or chronic dialysis

• Chronic restrictive, obstructive or vascular pulmonary disease leading to se-
vere functional impairment

• Chronic liver failure with portal hypertension (with positive liver biopsy)
and/or upper gastrointestinal bleeding due to portal hypertension and/or
episode of hepatic encephalopathy/coma due to medical history of liver fail-
ure

Admission type Admission to a medical/surgical tertiary ICU
Table 1: Table with all the baseline predictors.

The cause-specific hazards for infection β(0)
1 of the fitted Deep LM-CR model are shown in Table 3.

2 ANN model selection

In this section we find the best ANN design for two different prediction windows: 24 hours and 48 hours.

When testing the level of accuracy of LR, SVM and MLP, we need to aggregate the time-series in a suitable way.
We first extract simple statistics of the time-series instances (i.e., mean value, standard deviation, skewness, kurtosis,
minimum, and maximum value) on each of the physiological vital signals in a time window of 24 hours (or 48 hours).
In this way we obtain a total of 31 input features. It is important to mention that the input features extracted have been
linearly rescaled, in order to set the mean value and the standard deviation equal respectively to zero and one.

ar
X

iv
:2

30
1.

11
14

6v
1 

 [
st

at
.A

P]
  2

6 
Ja

n 
20

23



Supplementary Material

Variable name Variable description
Heart rate Median of 1-hour mean heart rate (bpm)
Blood pressure Median of 1-hour mean blood pressure, either invasive mean arterial blood pressure

measurement or non-invasive cuff (mmHg)
Oxygen saturation Median of 1-hour mean oxygen saturation (%)
Respiratory rate Median of 1-hour mean respiratory rate (rpm)
Pulse Median of 1-hour mean pulse pressure (difference between systolic and diastolic blood

pressure, mmHg)
Invasive mechanical
ventilation

Last observed mechanical ventilation status

FiO2 Last observed FiO2 (inspired oxygen concentration) value in 8 hours
Chronic corticos-
teroid use

Chronic medication use: systemic corticosteroids

Fever Presence of fever in last 8 hours (>38 degrees Celsius)
Fluid balance Fluid balance (mL) over the past 8 hours
Urine output Total urine output (mL) in 8-hour window
Suctioned sputum Total number of times sputum was suctioned and observed within an 8-hour time

window
Worsening CNS sta-
tus

Either decrease in consciousness (either a decrease in GSC M-score or worsening
RASS score) or onset of new delirium episode in the past 8 hours

CRP (last value) Last observed CRP (mg/L)
CRP (change) Unit change in CRP relative to CRP 24 hours earlier (mg/L)
White blood cell
count (last value)

Last observed white blood cell count (x109/L)

White blood cell
count (change)

Unit change in white blood cell (WBC) count relative to WBC hours earlier (x109/L)

Platelet count (last
value)

Last observed platelet count (x109/L)

Platelet count
(change)

Unit change in platelet count relative to platelet count 24 hours earlier (x109/L)

Prothrombin time
(last value)

Last observed prothrombin time (seconds)

Creatinine (last
value)

Last observed creatinine (μmol/L)

Creatinine (change) Unit change in creatinine relative to creatinine 24 hours earlier (μmol/L)
Total bilirubin (last
value)

Last observed total bilirubin (μmol/L)

Total bilirubin
(change)

Unit change in total bilirubin relative to bilirubin 24 hours earlier (μmol/L)

Bicarbonate (change) Unit change of bicarbonate relative to bicarbonate 24 hours earlier (mmol/L)
Lactate (last value) Last observed lactate (mmol/L)
Increase in vasopres-
sor rate

Increase in mean norepinephrine dose relative to previous 8-h window

Increase in insulin
dose

Increase in mean insulin dose relative to previous 8-h window

Gram+ in respiratory
culture

Gram-positive bacteria cultured in the airway (the result of the most recent culture)

Candida in respira-
tory culture

Candida species cultured in the airway (the result of the most recent culture)

Table 2: Table with all the time-dependent predictors.
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Covariate β
(0)
1 β-CI

Urine output 1 0.99-1.01
Suctioned sputum 1 0.99-1.02

SpO2 0.97 0.95-0.98
Respiratory Rate 1 0.99-1.01

Readmission 0.92 0.85-1.11
Pulse pressure 1 0.99-1.01
Gender (male) 1.4 1.20-1.53

Increase in vasopressor rate 1.4 1.25-1.49
Mechanical ventilation 1 0.88-1.21
mean Blood Pressure 1 0.99-1.01

White Blood Cells (last value) 1 0.99-1.01
Prothrombin time (last value) 1 0.99-1.01

Platelets (last value) 1 0.99-1.01
Lactose (last value) 0.98 0.95-1.04

CRP (last value) 1 0.99-1.01
Bilirubin (total) 1 0.99-1.01

Increase in insulin dose (total) 1 0.99-1.01
Immune compromise (total) 1.2 1.01-1.54

Heart Rate (total) 1 0.95-1.05
Gram+ respiratory culture (total) 1.1 1.01-1.54

Fluid balance 1 0.99-1.01
FiO2 (total) 1 0.99-1.01

Worsening CNS status (total) 1.1 1.02-1.18
Fever 2 1.86-2.75

APACHE-Trauma 1 0.92-1.34
APACHE-Transp 0.97 0.86-1.26
APACHE-Respir 0.67 0.54-0.77
APACHE-Other 0.58 0.33-0.96
APACHE-Neuro 1.2 1.01-1.48
APACHE-Gastro 0.71 0.54-0.96

Admission Type (surgical) 1.3 1.16-1.44
Diabetes mellitus 0.82 0.73-0.99

White Blood cells (change) 1 0.99-1.01
Platelets (change) 1 0.99-1.01
pCO2 (change) 1 0.99-1.01
CRP (change) 1 0.99-1.01

Bilirubine total (change) 1 0.99-1.01
Bicarbonate (change) 1 0.99-1.01

Corticosteroids 1.2 0.99-1.48
CNN Risk Score 4.8 3.05-6.72

Chronic organ failure 1.1 0.95-1.28
Candida respiratory culture 0.82 0.72-0.91

age 1 0.99-1.01
Table 3: Cause-specific hazards of ICU-AI
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(a) (b)

Figure 1: AUROC as a function of the inverse shrinkage parameter for (a) the 24-hour and (b) the 48-hour prediction
model. The red curve concerns the SVM model, while the blue line the LR model.

Both the LR and the SVM model are penalized with the L2 norm of the weights. We use the inverse of the shrinkage
parameter (here denoted as C) as the unique hyper-parameter of these two models; we then search for the best C that
optimizes the AUROC score; see Figure 1. In this case, we observe that both models cannot achieve an AUROC score
larger than 0.59. The 24-hour and the 48-hour prediction models present similar results.

As regards the MLP, the best accuracy of the model is intimately connected with the search of the best set of hyper-
parameters. Differently from the LR and the SVM, we have more parameters to tune: number of units, deepness,
dropout rate, learning rate, activation function, and the batch size. The tuning of these hyper-parameters has been
done by maximizing the AUROC score. The optimization was performed over a fine grid of hyper-parameters. The
MLP model was designed to optimize the binary cross-entropy by means of the ADAM optimizer. Note that the
depiction of the curve of the AUROC score as a function of the hyper-parameters is quite impractical, because of
the large number of parameters we had to tune. Anyway, we regarded all the configurations that meet one precise
constraint (e.g., we consider all configurations with deepness equal to 3 or a number of units equal to 16) and then we
selected that one with the highest AUROC score. The representation of the maximal AUROC scores should help to
visualize the variation in AUROC with respect to one single hyper-parameter. In Figure 2a and 2b are shown the MLP
models with a ReLU activation function (i.e., ReLU(x) = max (0, x)): the model does no achieve an AUROC score
higher than 0.63. Similarly, the choice of a hyperbolic tangent (tanh) activation function presents a similar result; see
Figure 2c and 2d.

The next model that we analyze is the CNN. Similarly to the MLP, we need to optimize over a set of hyper-parameters:
the number of convolutional filters, kernel size, deepness, learning rate, and the batch size. In this case, the activation
function has not been included in the hyper-parameters to tune; unlike the MLP model, we only considered the activa-
tion function ReLU. We motivate this choice after noting that several tests with a one held-out approach revealed that
sigmoidal activation functions (e.g., sigmoid or hyperbolic tangent) affected the predictiveness of the model; one ob-
tained AUROC always lower than 0.60 for different combinations of power (i.e., the number of filters times dropout
rate), deepness (i.e., number of hidden layers), and receptive field (i.e., the combination of kernel and max-pooling
layers of different size).

Before propagating the vital signs through the CNN model, a few pre-processing steps must be performed. Firstly,
one linear transformation was applied to all the instances to give a compact representation in the range [-1, 1]. Note
that we applied the same-type transformation to all instances; according to the time-series feature to rescale, a precise
linear transformation was applied. For example, we used the same linear transformation to rescale all heart rate signals
contained in all instances; but for all breath rate signals, we developed and used a different one. Hence, for each time-
series feature, we constructed a linear map that rescales both maximum and minimum values to 1 and -1, respectively.
For example, if we consider the heart rate predictor in the time-series instances, we know that the minimum and the
maximum value are 41 and 239 beats per minute, respectively. Accordingly, if we denote with XHR

i (t) the heart rate
feature of the i-th time series instance, the transformation we shall apply is

XHR
i (t)→ 2XHR

i (t)− 41bpm− 239bpm
239bpm− 41bpm

.
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(a) (b)

(c) (d)

Figure 2: MLP model. Maximal AUROC as a function of the hyper-parameters Units (a.k.a, number of units) and
Deepness. Each plot presents the behavior of both the 24-hour (green line) and 48-hour models (yellow line). The
following cases are considered: (a) Number of units and ReLU activation function, (b) Deepness and ReLU activation
function, (c) Number of units and tanh activation function, (d) Deepness and tanh activation function.

Unlike standardization (i.e., one imposes that all time-series features have unitary variance and zero mean value), the
application of these data-based linear transformations does not drastically distort proper characteristics of the vital
signals such as scale (i.e., the mean) and energy (i.e., the empirical second moment) value. In addition, data were
processed using the Piecewise Approximate Aggregation (PPA) method (Chen and Qi, 2019). Instead of representing
all very-high-scale details, we obtained a reduced but informative representation of vital signals while maintaining the
lower bound of distance measurements in Euclidean space. Therefore, we used PPA to aggregate time intervals of
length 9 minutes.

In Figure 3a, we see that the accuracy of the CNN increases with the number of filters: a high number of filters, such as
128, makes both 24-hour and 48-hour models accurate with AUROC 0.72 and 0.67, respectively. The composition of
many hidden layers is another key feature of enabling the model to be performative. In Figure 3b we see that few layers
are enough for the 24-hour model (AUROC in the range [0.70, 0.72]), whereas 6 convolutional layers are needed to
enable the 48-hour model to achieve the highest AUROC (0.67). Conversely, the amplitude of the convolutional masks
reduces the AUROC values, especially if one considers masks of size 17 or 33; see Figure 3c. Convolutional masks
of size 3 enable keeping the AUROC 0.72 and 0.67 for both the 24-hour and 48-hour models. Thus, after searching
for the best configuration, our investigation revealed that powerful (i.e., with many filters) and deep networks with
small-sized kernels are the type of CNN models to use.

For completeness, we compared a pure convolutional approach (i.e., CNN model) with a CNN-LSTM model. As
mentioned above, the latter has precisely the same architecture as the CNN model, except for the fact that an LSTM
layer replaces the flattern layer of the CNN model. The LSTM layer possesses only one relevant hyper-parameter, i.e.,
the number of units denoting the number of items used to encode the impute data. Thus, we considered a CNN-LSTM
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(a) (b)

(c)

Figure 3: CNN model. Maximal AUROC as a function of the hyper-parameters number of filters (a), deepness (b),
and kernel size. Each plot presents the behavior of both the 24-hour and 48-hour models.

with the best hyper-parameters found for the optimization of the CNN model. Still, the parameter number of units is
the unique variable assuming different values. In Figure 4, we see that an increase of the number of units does not
translate into an increase of the AUROC score. For the 24-hour model, the plateau region starting at unit 64 reveals
that the CNN-LSTM model is as accurate as the CNN model, i.e., AUROC score equal to 0.72 ± 0.01. The 48-hour
model cannot achieve AUROC values larger than 0.6, given any configuration of the LSTM units.

The last class of models that we tested is the two-dimensional CNN. Although one dimensional convolutional layers
represent the most natural choice, a two dimensional convolutional-based approach is always possible if one provides a
2-D representation of the sequential data. For example, the method developed by Ye et al. (2019) offers the possibility
of giving a 2-D representation of time series data, i.e. a 2-D binning is performed, where each 2-D bin counts the
number of records falling in a specific range of values and at some precise moments along the time domain; see the
example in Figure 5. A 2-D grid-structured representation of the EHR enabled us to investigate the possibility of using
a 2-D CNN model to early identify the onset of ICU-AI.

Despite sharing a similar structure with the one-dimensional CNN, the implementation of the 2-D CNN required
tuning a larger number of hyper-parameters. Such an increase in hyper-parameters is mainly due to the 2-D structure
of data; unlike the 1-D case, in the 2-D case, both the width and the height of the convolutional masks need to be
optimized as well as the height and the width of the 2-D bins representing each time-series feature. As with the 1-D
CNN model, we optimally tuned the model on a fine grid of parameters: number of filters, kernel size (on both the 2
dimensions), deepness, dropout, learning rate, batch size, and both width and height of the 2-D bins. In Figure 6, one
can see that drastic changes in the architecture of the 2-D CNN model do not cause relevant changes in the evaluation
of the maximal AUROC score. That is, opting for several configurations in the number of filters (see figure 6a), in the
deepness (see Figure 6b), in the size of the convolutional masks (Figure 6c), and in the height and width of the 2-D
bins (Figure 6d) do not lead both the 24-hour and the 48-hour models to achieve AUROC scores larger than 0.63.
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Figure 4: CNN LSTM model. AUROC as a function of the number of units of the LSTM layer. The choice of all other
hyperparameters of the CNN-LSTM model is identical to the ones of the optimal CNN model.

2.1 Chosen design

Among all the models considered, the (one-dimensional) CNN model was not the one with the highest predictive
performance. Although the 24-hour CNN-LSTM model could be slightly more accurate than the CNN, we observed
that the latter showed more precise predictive performances even with 48-hour Time-Series instances. The difference
in terms of AUROC between both models is marginal for the 24-hour model but instead evident for the 48-hours
models. Moreover, we opted for a CNN model also because we want to explain the activity of pattern recognition via
a robust XAI method such as the SMOE scale (see Section 3).

For the 24-hour model, we propose the following optimal architecture:

1. Convolutional Layers: the number of filters on each layer is 128, and each filter has a size of 3 (pixels). The
result of these convolutions is referred to as feature maps.

2. Activation Layer: the ReLU function is applied after each convolution operator. This application of a non-
linear activation function on the feature maps gives birth to the activated feature maps.

3. Max-pooling layer: the activated feature maps are resampled via a Max-pooling operator with a pooling size
of 2.

This sequence of hidden layers is repeated five times. The architecture also encloses a Dropout layer after each Max-
Pooling layer. The Dropout layer has a dropout rate of 0.25. The last feature map is flattened into an array and
then propagated in a fully-connected layer (dense layer) with a sigmoid activation function. The activation function
returns a positive output between 0 and 1, that is, the risk score denoting the chance of a patient developing an ICU-AI
episode. As usual, the loss function is the binary cross-entropy, and the optimizer is the ADAM algorithm. For the
48-hour model, the architecture is identical to the 24-hour one, except for the fact that the sequence of convolutional
and max-poling layers is repeated 6 times.

3 Saliency Map Order Equivalent (SMOE) scale

In this section we present the algorithm used in the manuscript for estimating the saliency maps. Differently from the
gradient based methods (e.g., the Vanilla Gradient (VG), see for instance Simonyan et al. (2013)), the SMOE scale
(Mundhenk et al., 2019) provides a different perspective for the estimation of the saliency of the CNN-activated feature
maps. In fact, the SMOE scale focuses on the statistics of the activation of these feature maps.

The algorithm provides a (reasonably) faithful representation of the information contained in the input data: the larger
is the overall activation of the feature maps, the more the input features are likely to be informative. Let us consider
a CNN model, we denote with χij ∈ R+ the values of an activated feature map with ReLU activation function and
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Figure 5: Example of 2-D representation of a time-series instance. On the left column the time-series features (EHR),
while on the right columns their 2-D representation
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(a) (b)

(c)
(d)

Figure 6: 2-D CNN model. Maximal AUROC as a function of the hyper-parameters number of filters (a), deepness
(b), kernel size (c), and the dimensionality of the 2-D bins (d). Each plot presents the behavior of both the 24-hour
(cyan) and 48-hour (pink) models.

denote with i and j, respectively, the spatial domain and the depth (i.e., number of time-series features). A function
ϕ : R+ → R+ is applied at each point of the spatial domain, all over the depth dimension. Thus, we obtain the
saliency map via the relation S = ϕ(χ). We assume that the activated feature map χ is Gamma distributed with shape
parameter k and scale parameter θ. The reason for this assumption relies on the fact that the Gamma distribution
is the maximum entropy probability distribution for a random variable whose mean and entropy are fixed (Lagrange
multipliers). Since in our context each activation map has both a fixed mean value (i.e., the scale of the activation map)
and fixed entropy (i.e., the information captured in the feature map), the choice of a Gamma distributed feature map
seems natural. Therefore, we estimate the distribution parameters by means of the Maximum Likelihood Principle,
namely:

θ̂i =

∑D
j=0 χij

Dk̂i
, (1)

and

log (k̂i)− ψ(k̂i) = log

(∑D
j=0 χij

D

)
−
∑D

j=0 logχij

D
;

with the sums running over the depth domain (i.e. the domain of the input features), with D the number of input
features, and ψ(x) the digamma function (Silverman et al., 1972). We recall that the digamma function is defined as:

ψ(x) =
d log Γ(x)

dx
,

with Γ(x) the Euler’s Gamma function (Silverman et al., 1972).
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Figure 7: Estimated k̂ via Bisection method as a function of the value 1/s

Note that the estimation of the parameters θi and ki is restricted to the i-th element along the spatial domain of the
activated feature map χ: we are extracting information about the sparseness of activation along the depth domain, and
not along the spatial domain. However, we cannot find an estimation of ki in a closed form, but we can let:

si = log

(∑D
j=0 χij

D

)
−
∑D

j=0 logχij

D
;

and then we use of the asymptotic expansion of the digamma function (Abramowitz and Stegun, 1964), and we obtain
the following approximation:

log x− ψ(x) ' 1

2x

(
1 +

1

6x

)
.

Thus, a first order approximation of k̂ is given by:

k̂i '
1
4 + 1

2

√
1 + 3si

si
. (2)

However, we can refine k̂i by using the Newton-Ralphson method (Ypma, 1995) and use (2) as an initial value. As a
result, k̂i appears to be related to 1

si
; as shown in Figure 7. After substituting 1

si
with k̂i in (1) we obtain:

θ̂i =

(∑D
j χij

D

)
log

(∑D
j χij

D

)
−

D∑

j=0

logχij

D


 ,

which can be finally rewritten as:

θ̂SMOE,i =
1

D

D∑

j=0

〈χ〉 log
〈χ〉
χij

, (3)

where

〈χ〉 :=
1

D

D∑

m=0

χlm.

Hence, (3) represents the SMOE scale, i.e. the statistics involved in the computation of the saliency maps: it is
proportional to the activated mean value (along depth) via the term 〈χ〉. Moreover, it depends on the the variance, as
we can see by performing a Taylor expansion of logχij around 〈χ〉:

log 〈χ〉 − 〈logχ〉 ' 〈χ − 〈χ〉〉
2

2 〈χ2〉 .
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Figure 8: Example of the toy sine dataset. The mean samples are plotted in blue and green, respectively, for classes 0
and 1. The light-colored areas represent the standard deviation values of the mean samples.

The simplification is used in the estimation of the Gamma scale parameters is the SMOE to the full iterative scale
parameter estimation (Mundhenk et al., 2019).

By construction, we can apply the SMOE scale only on one single activated feature map; that is, we can only estimate
the informative sparseness of each activated feature map independently. We can then combine them in order to obtain
an overall measurement of saliency at each spatial/temporal location.

Therefore, the SMOE scale used is the estimated scale parameter of a Gamma distribution. In Section 6 of the main
manuscript we have used this assumption for deriving the saliency map. However, we have checked this hypothesis
via a multiple Kolmogorov-Smirnov test, with Bonferroni correction: for each activation map and for a given value of
the temporal domain, we have tested whether the values of the feature are gamma distributed with scale parameter θ̂i
as estimated in (3). We did not reject the null hypothesis with α = 0.05.

Before concluding this section, we want to present a brief example of the XAI methods we have introduced above. Let
us consider the following toy data set for binary classification of time-series: the class 0 is generated by:

X
(n)
0 (t) = sin (2π[t+ φn]), t ∈ [0, 1];

with X(n)
0 (t) denoting the n-th instance of the class 0, and φn

i.i.d∼ U(−0.125, 0.125). Likewise, for class 1 we set:

X
(n)
1 (t) = − sin (2π[t+ φn]), t ∈ [0, 1].

We shall refer to this dataset as toy sine dataset. A representation of the toy sine dataset is shown in Figure 8. We
train and test a CNN with a one-held-out approach (i.e., we only evaluate the model’s accuracy after making just one
split into train and test set) with train size 75% (i.e., we use 75% of the dataset to train the CNN model). As a result,
the AUROC of the model is equal to 0.99.

Figure 9 shows the saliency maps for the SMOE Scale. We notice that that the saliency maps detect a salient area in
correspondence with the trough of the sinusoidal oscillation, i.e., those areas of the input domain where the saliency
maps achieve the highest values. As expected, the localization of the trough in two distinct areas of the input domain
T ∈ [0, 1] represents the critical feature that the CNN captures to distinguish the two classes.
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Figure 9: Saliency maps obtained via SMOE Scale method for the sine toy dataset. (a) Mean sample (blue) and mean
saliency map (red) for class 0. (b) Mean sample (blue) and mean saliency map (red) for class 1.
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