812 research outputs found
Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling and gravity measurements
We studied the Yellowstone caldera geological unrest between 1977 and 2010 by investigating
temporal changes in differential Interferometric Synthetic Aperture Radar (InSAR), precise spirit leveling and
gravity measurements. The analysis of the 1992–2010 displacement time series, retrieved by applying the SBAS
InSAR technique, allowed the identification of three areas of deformation: (i) the Mallard Lake (ML) and Sour
Creek (SC) resurgent domes, (ii) a region close to the Northern Caldera Rim (NCR), and (iii) the eastern Snake
River Plain (SRP). While the eastern SRP shows a signal related to tectonic deformation, the other two regions
are influenced by the caldera unrest. We removed the tectonic signal from the InSAR displacements, and we
modeled the InSAR, leveling, and gravity measurements to retrieve the best fitting source parameters. Our
findings confirmed the existence of different distinct sources, beneath the brittle-ductile transition zone, which
have been intermittently active during the last three decades. Moreover, we interpreted our results in the light
of existing seismic tomography studies. Concerning the SC dome, we highlighted the role of hydrothermal
fluids as the driving force behind the 1977–1983 uplift; since 1983–1993 the deformation source transformed
into a deeper one with a higher magmatic component. Furthermore, our results support the magmatic nature
of the deformation source beneath ML dome for the overall investigated period. Finally, the uplift at NCR is
interpreted as magma accumulation, while its subsidence could either be the result of fluids migration outside
the caldera or the gravitational adjustment of the source from a spherical to a sill-like geometr
DInSAR deformation time series for monitoring urban areas: The impact of the second generation SAR systems
We investigate the capability improvement of the DInSAR techniques to map deformation phenomena affecting urban areas, by performing a comparative analysis of the deformation time series retrieved by applying the full resolution Small BAseline Subset (SBAS) DInSAR technique to selected sequences of SAR data acquired by the ENVISAT, RADARSAT-1 and COSMO-SkyMed (CSK) SAR data. The presented study, focused on the city of Napoli (Italy), allows us to quantify the dramatic increase of the DInSAR coherent pixel density achieved by exploiting the high resolution X-Band CSK SAR images with respect to the RADARSAT-1 and ENVISAT products, respectively; this permits us to analyze nearly all the structures located within the investigated urbanized area and, in many cases, also portions of a same building. © 2012 IEEE
Generation of large scale digital evaluation models via synthetic aperture radar interferometry
We investigate the possibility to generate a large-scale Digital Elevation Model by applying the Synthetic Aperture Radar interferometry technique and using tandem data acquired by the ERS-1/ERS-2 sensors. The presented study
is mainly focused on the phase unwrapping step that represents the most critical point of the overall processing chain. In particular, we concentrate on the unwrapping problems related to the use of a large ERS tandem data set that, in order to be unwrapped, must be partitioned. The paper discusses the inclusion of external information (even rough) of the scene topography, the application of a region growing unwrapping technique and the insertion of possible constraints on the phase to be
retrieved in order to minimize the global unwrapping errors. Our goal is the generation of a digital elevation model relative to an area of 300 km by 100km located in
the southern part of Italy. Comparisons between the achieved result and a precise digital terrain model, relative to a smaller area, are also included
Morpho-Tectonic Evolution of the Southern Apennines and Calabrian Arc: Insights From Pollino Range and Surrounding Extensional Intermontane Basins
The evolution of topography in forearc regions results from the complex interplay of crustal and mantle processes. The Southern Apennines represent a well-studied forearc region that experienced several tectonic phases, initially marked by compressional deformation followed by extension and large-scale uplift. We present a new structural, geomorphic and fluvial analysis of the Pollino Massif and surrounding intermontane basins (Mercure, Campotenese and Castrovillari) to unravel their evolution since the Pliocene. We constrain multiple tectonic transport directions, evolution of the drainage, and magnitude and timing of long-term incision following base level falls. Two sets of knickpoints suggest two phases of base level lowering and allow to estimate similar to 500 m of long-term uplift (late Pleistocene), as observed in the Sila Massif. On a smaller spatial scale, the evolution and formation of topographic relief, sedimentation, and opening of intermontane basins is strongly controlled by the recent increase in rock uplift rate and fault activity. At the regional scale, an along-strike, long-wavelength uplift pattern from north to south can be explained by progressive lateral slab tearing and inflow of asthenospheric mantle beneath Pollino and Sila, which in turn may have promoted extensional tectonics. The lower uplift of Le Serre Massif may be explained as result of weak plate coupling due to narrowing of the Calabrian slab. The onset of uplift in the Pollino Massif, ranging from 400 to 800 ka, is consistent with that one proposed in the southern Calabrian forearc, suggesting a possible synchronism of uplift, and lateral tearing of the Calabrian slab.Topographic evolution constrained by structural, geomorphic and river analysis of the Pollino range and surrounding extensional basins At short spatial scale, increase in rock uplift and fault activity controls the endorheic-exorheic transition At regional scale, uplift increases between 400 and 800 ka, due to progressive lateral slab tearing, and inflow asthenospheric mantl
Volume unbalance on the 2016 Amatrice - Norcia (Central Italy) seismic sequence and insights on normal fault earthquake mechanism
We analyse the M w 6.5, 2016 Amatrice-Norcia (Central Italy) seismic sequence by means of InSAR, GPS, seismological and geologic data. The >1000 km 2 area affected by deformation is involving a volume of about 6000 km 3 and the relocated seismicity is widely distributed in the hangingwall of the master fault system and the conjugate antithetic faults. Noteworthy, the coseismically subsided hangingwall volume is about 0.12 km 3 , whereas the uplifted adjacent volumes uplifted only 0.016 km 3 . Therefore, the subsided volume was about 7.5 times larger than the uplifted one. The coseismic motion requires equivalent volume at depth absorbing the hangingwall downward movement. This unbalance regularly occurs in normal fault-related earthquakes and can be inferred as a significant contribution to coseismic strain accomodated by a stress-drop driven collapse of precursory dilatancy. The vertical coseismic displacement is in fact larger than the horizontal component, consistent with the vertical orientation of the maximum lithostatic stress tensor
Uplift and magma intrusion at Long Valley caldera from InSAR and gravity measurements
The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic fi eld includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fl uid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest
Using groundwater monitoring wells for rapid application of soil gas radon deficit technique to evaluate residual LNAPL
The application of the 222Radon (Rn) deficit technique using subsurface soil gas probes for the identification and quantification of light non-aqueous phase liquids (LNAPL) has provided positive outcomes in recent years. This study presents an alternative method for applying this technique in the headspace of groundwater monitoring wells. The developed protocol, designed for groundwater monitoring wells with a portion of their screen in the vadose zone, is based on the use of portable equipment that allows rapid measurement of the Rn soil gas activity in the vadose zone close to the water table (i.e., smear zone) where LNAPL is typically expected. The paper first describes the step-by-step procedure to be followed for the application of this method. Then, a preliminary assessment of the potential of the method was carried out at two Italian sites characterized by accidental gasoline and diesel spills into the subsurface from underground storage tanks. Although the number of tests conducted does not allow for definitive conclusions, the results obtained suggest that, from a qualitative point of view, Rn monitoring in the headspace of monitoring wells is a promising, fast, and minimally invasive screening method that could also potentially reduce the costs associated with field data acquisition. This method proves to be suitable for detecting the presence of LNAPL in both the mobile and residual phases with results consistent with the other lines of evidence available at the sites, such as groundwater and soil gas monitoring. Future efforts should be directed toward evaluating the accuracy of this method for a quantitative assessment of residual LNAPL saturations
Innovative strategies to predict and prevent the risk for malnutrition in child, adolescent, and young adult cancer survivors
Children, adolescents, and young adult cancer survivors (CAYAs) constitute a growing population requiring a customized approach to mitigate the incidence of severe complications throughout their lifetimes. During cancer treatment, CAYAs cancer survivors undergo significant disruptions in their nutritional status, elevating the risks of mortality, morbidity, and cardiovascular events. The assessment of nutritional status during cancer treatment involves anthropometric and dietary evaluations, emphasizing the necessity for regular assessments and the timely identification of risk factors. Proactive nutritional interventions, addressing both undernutrition and overnutrition, should be tailored to specific age groups and incorporate a family-centered approach. Despite encouraging interventions, a notable evidence gap persists. The goal of this review is to comprehensively examine the existing evidence on potential nutritional interventions for CAYAs cancer survivors. We explore the evidence so far collected on the nutritional intervention strategies elaborated for CAYAs cancer survivors that should target both undernutrition and overnutrition, being age-specific and involving a family-based approach. Furthermore, we suggest harnessing artificial intelligence (AI) to anticipate and prevent malnutrition in CAYAs cancer survivors, contributing to the identification of novel risk factors and promoting proactive, personalized healthcare
The Role of Nutrition in Primary and Secondary Prevention of Cardiovascular Damage in Childhood Cancer Survivors
Innovative therapeutic strategies in childhood cancer led to a significant reduction in cancer-related mortality. Cancer survivors are a growing fragile population, at risk of long-term side effects of cancer treatments, thus requiring customized clinical attention. Antineoplastic drugs have a wide toxicity profile that can limit their clinical usage and spoil patients' life, even years after the end of treatment. The cardiovascular system is a well-known target of antineoplastic treatments, including anthracyclines, chest radiotherapy and new molecules, such as tyrosine kinase inhibitors. We investigated nutritional changes in children with cancer from the diagnosis to the end of treatment and dietary habits in cancer survivors. At diagnosis, children with cancer may present variable degrees of malnutrition, potentially affecting drug tolerability and prognosis. During cancer treatment, the usage of corticosteroids can lead to rapid weight gain, exposing children to overweight and obesity. Moreover, dietary habits and lifestyle often dramatically change in cancer survivors, who acquire sedentary behavior and weak adherence to dietary guidelines. Furthermore, we speculated on the role of nutrition in the primary prevention of cardiac damage, investigating the potential cardioprotective role of diet-derived compounds with antioxidative properties. Finally, we summarized practical advice to improve the dietary habits of cancer survivors and their families
- …