13 research outputs found

    Degradation of calcium phosphate cements

    Get PDF
    Contains fulltext : 106967.pdf (publisher's version ) (Open Access)Calcium Phosphate Cements (CPC) are commonly used as bone replacement materials. Rosa Félix’s reseach specifically deals with strategies to enhance CPC degradation and its subsequent replacement by newly formed bone. In order to achieve this, several materials have been used in combination with CPC to create porosity that will increase fluid-flow and cell penetration throughout the implant material and therefore facilitate implant degradation. In this doctoral thesis research, the influence of several physico-chemical properties of varoius potential CPC porogens have been investigated in order to improve CPC degration and new bone formation. In addition, the influence of bio-active factors in this process of new bone formation has also been studied.Radboud Universiteit Nijmegen, 28 maart 2013Promotor : Jansen, J.A. Co-promotores : Wolke, J.G.C., Leeuwenburgh, S.C.G

    Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles

    No full text
    Item does not contain fulltextApatitic calcium phosphate cements (CPC) are frequently used to fill bone defects due to their favourable clinical handling and excellent bone response, but their lack of degradability inhibits complete bone regeneration. In order to render these injectable CaP cements biodegradable, hollow microspheres made of poly (D,L-lactic-co-glycolic) acid (PLGA) have been previously used as porogen since these microspheres were shown to be able to induce macroporosity upon degradation as well as to accelerate CPC degradation by release of acid degradation products. Recently, the capacity of PLGA microspheres to form porosity in situ in injectable CPCs was optimized by investigating the influence of PLGA characteristics such as microsphere morphology (dense vs. hollow) and end-group functionalization (acid terminated vs. end-capped) on acid production and corresponding porosity formation in vitro. The current study has investigated the in vivo bone response to CPCs containing two types of microspheres (hollow and dense) made of PLGA with two different end-group functionalizations (end capped and acid terminated). Microspheres were embedded in CPC and injected in the distal femoral condyle of New Zealand White Rabbits for 6 and 12 weeks. Histological results confirmed the excellent biocompatibility and osteoconductivity of all tested materials. Composites containing acid terminated PLGA microspheres displayed considerable porosity and concomitant bone ingrowth after 6 weeks, whereas end capped microspheres only revealed open porosity after 12 weeks of implantation. In addition, it was found that dense PLGA microspheres induced significantly more CPC degradation and bone tissue formation compared to hollow PLGA microspheres. In conclusion, it was shown that PLGA microspheres have a strong capacity to induce fast degradation of injectable CPC and concomitant replacement by bone tissue by controlled release of acid polymeric degradation products without compromising the excellent biocompatibility and osteoconductivity of the CPC matrix

    In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres

    No full text
    Item does not contain fulltextCalcium phosphate cements (CPCs) are frequently used as bone substitute material. Despite their superior clinical handling and excellent biocompatibility, they exhibit poor degradability, which limits bone ingrowth into the implant. Microspheres were prepared from poly(d,l-lactic-co-glycolic acid) (PLGA) and included in injectable CPCs as porogens in order to enhance its macroporosity after the polymeric microspheres had degraded. Upon degradation of the PLGA microspheres, acid is produced that enhances the dissolution rate of the CPC. However, the effect of the characteristics of PLGA microspheres on the degradation rate of CPCs has never been studied before. Therefore, the purpose of the current study was to investigate the dependence of CPC degradation on the chemical and morphological characteristics of incorporated PLGA microspheres. With respect to the chemical characteristics of the PLGA microspheres, the effects of both PLGA molecular weight (5, 17 and 44kDa) and end-group functionalization (acid-terminated or end-capped) were studied. In addition, two types of PLGA microspheres, differing in morphology (hollow vs. dense), were tested. The results revealed that, although both chemical parameters clearly affected the polymer degradation rate when embedded as hollow microspheres in CPC, the PLGA and CPC degradation rates were mainly dependent on the end-group functionalization. Moreover, it was concluded that dense microspheres were more efficient porogens than hollow ones by increasing the CPC macroporosity during in vitro incubation. By combining all test parameters, it was concluded that dense PLGA microspheres consisting of acid-terminated PLGA of 17kDa exhibited the highest and fastest acid-producing capacity and correspondingly the highest and fastest amount of porosity. In conclusion, the data presented here indicate that the combination of dense, acid-terminated PLGA microspheres with CPC emerges as a successful combination to achieve enhanced apatitic CPC degradation

    New polyoxazoline loaded patches for hemostasis in experimental liver resection

    No full text
    A new cost-effective NHS functionalized polyoxazoline (POx) loaded polymer with strong hemostatic properties has been developed. In this study, we investigate POx loaded hemostatic patches regarding hemostatic efficacy, local inflammatory reaction and wound-healing, as compared to the non-POx treated blanks and commercially available hemostatic products. Hundred and ten rats divided into 11 groups of 10 animals underwent partial liver lobe resection. Eight groups received experimental patches, two groups commercially available hemostatic patches (TachoSil® and Veriset™, positive controls), one group with gauzes (negative control). Each animal received twice a patch with a size 1.5 × 2.5 cm, on each partially resected lobe. Primary endpoint was time to hemostasis (TTH). The rats were sacrificed at different time points (1, 3, or 7 days) to measure local inflammatory response and early wound healing. Of the POx loaded patches, GFC NHS-POx (TTH 20.4 s, p = .019) and GFC-NHS-POx1.5 (TTH 0.0 s, p = .003) showed significantly faster TTH compared to TachoSil® (TTH 95.4 s), and were comparable to Veriset™ (TTH 17.0 s). Three patches, GFC-NHS-POx 1.5 (TTH 0.0 s, p = .016), ORC NHS-POx:NU-POx (TTH 91.4 s, p = .033), and ORC-PLGA NHS-POx:NU-POx (TTH 105.6 s, p = .04) had a lower TTH compared to their own blank carrier (TTH 74.9, 157.8, and 195.7 s, respectively). With regard to biocompatibility, all POx loaded patches showed results comparable to TachoSil® and Veriset™. NHS-POx-loaded hemostatic patch demonstrate fast and effective hemostasis, comparable or better than commercially available hemostatic patches, with similar early biocompatibility

    Accelerated calcium phosphate cement degradation due to incorporation of glucono-delta-lactone microparticles

    No full text
    Item does not contain fulltextInjectable calcium phosphate cements (CPC) are frequently used for filling of bone defects due to their excellent osteocompatibility. Their poor degradability, however, limits complete regeneration of bone defects. Organic additives that produce acid by-products are particularly attractive to create macroporosity in situ since CPC degrade by acid dissolution. The aim of the current study was to investigate whether glucono-delta-lactone (GDL) can be used as acid-producing microparticles for incorporation into CPC without compromising its osteocompatibility. Characterization studies confirmed that CPCs containing either low or high amounts of GDL were injectable and self-setting, while a considerable amount of porosity was formed already within 1 day of incubation in phosphate buffered saline due to dissolution of GDL. Histomorphometrical evaluation after 2 weeks of implantation revealed that CPC containing 10% of GDL degraded faster and was replaced by more bone tissue than CPCs containing either Poly (lactic-co-glycolic acid) (PLGA) or gelatin microspheres. Summarizing, the current study showed that CPCs containing appropriate amounts of GDL display accelerated degradation and new bone formation compared with CPCs containing microparticles made of conventional polymers such as PLGA or gelatin

    Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation

    No full text
    The aim of this study was to evaluate the effect of PLGA microsphere dimensions on bone formation after injection of calcium phosphate cement (CPC)/PLGA in a guinea pig tibial intramedullarly model. To this end, injectable CPC/PLGA formulations were prepared using PLGA microspheres with either a small (~25 microm) or large (~100 microm) diameter, which were incorporated at a 20:80 ratio (wt%) within apatite CPC. Both CPC/PLGA formulations were injected into a marrow-ablated tibial intramedullary cavity and, after an implantation period of 12 weeks, histology and histomorphometry were used to address bone formation. The results demonstrated bone ingrowth throughout the entire scaffold material for both CPC/PLGA formulations upon PLGA microsphere degradation. More importantly, bone formation within the CPC matrix was > two-fold higher for CPC-PLGA with 25 microm PLGA microspheres. Additionally, the pattern of bone and marrow formation showed distinct differences related to PLGA microsphere dimension. In general, this study demonstrates that PLGA microsphere dimensions of ~25 microm, leading to pores of ~25 microm within CPC, are sufficient for bone ingrowth and allow substantial bone formation. Further, the results demonstrate that PLGA microsphere dimensions provide a tool to control bone formation for injectable CPC/PLGA bone substitutes. Copyright (c) 2013 John Wiley & Sons, Ltd

    Three different strategies to obtain porous calcium phosphate cements: comparison of performance in a rat skull bone augmentation model.

    No full text
    Item does not contain fulltextPreprosthetic surgery has become a routine procedure to obtain sufficient bone quantity and quality for dental implant installation in patients with an initial inadequate bone volume. Although autologous bone onlay or inlay grafting is still the preferred bone augmentation technique, a broad range of synthetic bone substitutes have been developed, for example, calcium phosphate cement (CPC). The introduction of porosity within CPC can be used to increase CPC degradation and bone ingrowth. Therefore, three different strategies to obtain porous CPCs were evaluated in this preclinical study. Instantaneously porous CPC (CPC-IP) was compared with delayed porous CPC in vitro and in vivo. CPC-IP was obtained by the creation of CO(2) bubbles during setting, whereas delayed porous CPC was obtained after the degradation of incorporated poly(lactic-co-glycolic acid) (PLGA) microspheres. As an additional aspect, delayed porous CPC was created by the incorporation of either hollow or dense degradable PLGA microspheres (CPC-hPLGA and CPC-dPLGA). All CPC compositions showed appropriate clinical handling properties and an interconnected porous structure with a final porosity above 70% (v/v). In vitro degradation studies showed the gradual formation of pores and further CPC-matrix dissolution for CPCs containing PLGA microspheres (dPLGA microspheres > hPLGA microspheres). For in vivo evaluation of the CPCs, an augmentation model was used, allowing a CPC injection into a rigidly immobilized Teflon ring on the rat skull. Histological evaluation after 12 weeks of implantation showed bone formation using all three CPCs. Bone apposition reached volumetric amounts of up to 10% of the augmentation area and a maximum augmentation height of approximately 1 mm. CPC-IP showed significantly more bone formation and resulted in a superior bone apposition height compared with both CPCs containing PLGA microspheres. No differences in biological performance were observed between the CPCs containing hPLGA and those containing dPLGA microspheres. Further research is necessary to enhance the bone appositional speed and amount of CPCs for bone augmentation procedures before them being used in a potential clinical setting.1 juni 201

    Porous calcium phosphate cement for alveolar bone regeneration

    No full text
    Item does not contain fulltextThe present study aimed to provide information on material degradation and subsequent alveolar bone formation, using composites consisting of calcium phosphate cement (CPC) and poly(lactic-co-glycolic) acid (PLGA) with different microsphere morphology (hollow vs dense). In addition to the plain CPC-PLGA composites, loading the microspheres with the growth factors platelet-derived growth factor (PDGF) and insulin-like growth factor (IGF) was investigated. A total of four different CPC composites were applied into one-wall mandible bone defects in beagle dogs in order to evaluate them as candidates for alveolar bone regeneration. These composites consisted of CPC and hollow or dense PLGA microspheres, with or without the addition of PDGF-IGF growth factor combination (CPC-hPLGA, CPC-dPLGA, CPC-hPLGAGF , CPC-dPLGAGF ). Histological evaluation revealed significantly more bone formation in CPC-dPLGA than in CPC-hPLGA composites. The combination PDGF-IGF enhanced bone formation in CPC-hPLGA materials, but significantly more bone formation occurred when CPC-dPLGA was used, with or without the addition of growth factors. The findings demonstrated that CPC-dPLGA composite was the biologically superior material for use as an off-the-shelf material, due to its good biocompatibility, enhanced degradability and superior bone formation. Copyright (c) 2012 John Wiley & Sons, Ltd
    corecore