68 research outputs found

    Magnetic Nanosized {M<sup>II</sup><sub>24</sub>}-Wheel-Based (M = Co, Ni) Coordination Polymers

    No full text
    Two 3D coordination polymers, [Co<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>18</sub>(H<sub>2</sub>O)<sub>6</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>36</sub> (<b>1</b>·guests, ip = isophthalate) and [Ni<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>12</sub>(H<sub>2</sub>O)<sub>12</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>20</sub> (<b>2</b>·guests), constructed with nanosized tetraicosanuclear Co<sup>II</sup> and Ni<sup>II</sup> wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions

    Magnetic Nanosized {M<sup>II</sup><sub>24</sub>}-Wheel-Based (M = Co, Ni) Coordination Polymers

    No full text
    Two 3D coordination polymers, [Co<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>18</sub>(H<sub>2</sub>O)<sub>6</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>36</sub> (<b>1</b>·guests, ip = isophthalate) and [Ni<sub>24</sub>(OH)<sub>12</sub>(SO<sub>4</sub>)<sub>12</sub>(ip)<sub>6</sub>(DMSO)<sub>12</sub>(H<sub>2</sub>O)<sub>12</sub>]·­(DMSO)<sub>6</sub>­(EtOH)<sub>6</sub>(H<sub>2</sub>O)<sub>20</sub> (<b>2</b>·guests), constructed with nanosized tetraicosanuclear Co<sup>II</sup> and Ni<sup>II</sup> wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions

    Valence Tautomeric Transitions of Three One-Dimensional Cobalt Complexes

    No full text
    Three novel complexes, namely, [Co<sup>III</sup>(3,5-DBCat)­(3,5-DBSq)­(bpe)]·2CH<sub>3</sub>CN·2H<sub>2</sub>O (<b>1</b>·<i>S</i>), [Co<sup>III</sup>(3,5-DBCat)­(3,5-DBSq)­(azpy)]·2CH<sub>3</sub>CN·2H<sub>2</sub>O (<b>2</b>·<i>S</i>), and [Co<sup>II</sup>(3,5-DBSq)<sub>2</sub>(bpb)]­[Co<sup>III</sup>(3,5-DBCat)­(3,5-DBSq)­(bpb)]<sub>0.5</sub>·2CH<sub>3</sub>CN·2H<sub>2</sub>O (<b>3</b>·<i>S</i>), were synthesized and characterized by valence tautomeric (VT) X-ray diffraction and magnetic measurements [where 3,5-DBCatH<sub>2</sub> = 3,5-di-<i>tert</i>-butyl-catechol, 3,5-DBSqH = 3,5-di-<i>tert</i>-butyl-semiquinone, bpe = <i>trans</i>-bis­(4-pyridyl)­ethylene, azpy = <i>trans</i>-4,4′-azopyridine, and bpb = 1,4-bis­(4-pyridyl)­benzene]. The three complexes have similar one-dimensional chain structure building from bidentate-bridging pyridine ligands and planar 3,5-DBCat/3,5-DBSq-fixed Co<sup>II/III</sup> entities. Complexes <b>1</b>·<i>S</i> and <b>2</b>·<i>S</i> could retain the crystallinity during desolvation, and the crystal structures of <b>1</b> and <b>2</b> were therefore able to be determined. Only when <b>1</b>·<i>S</i> and <b>2</b>·<i>S</i> desolvated above 310 K did the magnetic susceptibilities × temperatures values of the two complexes rise sharply, and then thermally induced complete, one-step VT transitions for <b>1</b> and <b>2</b> were available and repeatable. Complex <b>3</b>·<i>S</i> showed an incomplete, one-step VT transition independent of solvent molecules. Among these complexes, only <b>1</b> was sensitive to photoexcitation at low temperature, its photoinduced metastable state relaxed with temperature-independent behavior at low temperature range (5–10 K) and with thermally assisted behavior at high temperature range (above 20 K), respectively

    Co-ligand and Solvent Effects on the Spin-Crossover Behaviors of PtS-type Porous Coordination Polymers

    No full text
    In our previous work (Chen, X.-Y.; Chem. Commun. 2013, 49, 10977−10979), we have reported the crystal structure and spin-crossover properties of a compound [Fe­(NCS)<sub>2</sub>­(tppm)]·<i>S</i> [<b>1</b>·<i>S</i>, tppm = 4,4′,4″,4‴-tetrakis­(4-pyridyl­ethen-2-yl)­tetraphenylmethane, <i>S</i> = 5CH<sub>3</sub>OH·​2CH<sub>2</sub>Cl<sub>2</sub>]. Here, its analogues [Fe­(X)<sub>2</sub>­(tppm)]·<i>S</i> [X = NCSe<sup>–</sup>, NCBH<sub>3</sub><sup>–</sup>, and N­(CN)<sub>2</sub><sup>–</sup> for compounds <b>2</b>·<i>S</i>, <b>3</b>·<i>S</i>, and <b>4</b>·<i>S</i>, respectively] have been synthesized and characterized by variable-temperature X-ray diffraction and magnetic measurements. The crystal structure analyses of <b>2</b>·<i>S</i> and <b>3</b>·<i>S</i> reveal that both compounds possess the same topologic framework (PtS-type) building from the tetrahedral ligand tppm and planar unit FeX<sub>2</sub>; the framework is two-fold self-interpenetrated to achieve one-dimensional open channels occupied by solvent molecules. Powder X-ray diffraction study indicates the same crystal structure for <b>4</b>. The average values of Fe–N distances observed, respectively, at 100, 155, and 220 K for the Fe1/Fe2 centers are 1.969/2.011, 1.970/2.052, and 2.098/2.136 Å for <b>2</b>·<i>S</i>, whereas those at 110, 175, and 220 K are 1.972/2.013, 1.974/2.056, and 2.100/2.150 Å for <b>3</b>·<i>S</i>, indicating the presence of a two-step spin crossover in both compounds. Temperature-dependent magnetic susceptibilities (χ<sub>M</sub><i>T</i>) confirm the two-step spin-crossover behavior at 124 and 200 K in <b>2</b>·<i>S</i>, 151 and 225 K in <b>3</b>·<i>S</i>, and 51 and 126 K in <b>4</b>·<i>S</i>, respectively. The frameworks of <b>2</b>–<b>4</b> are reproducible upon solvent exchange and thereafter undergo solvent-dependent spin-crossover behaviors

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions

    Anion-Controlled Assembly of Silver(I)/Aminobenzonitrile Compounds: Syntheses, Crystal Structures, and Photoluminescence Properties

    No full text
    Five coordination compounds (CCs) of the formulas {[Ag­(<i>m</i>-abn)<sub>2</sub>]·NO<sub>3</sub>}<sub><i>n</i></sub> (<b>1</b>), {[Ag<sub>2</sub>(<i>m</i>-abn)<sub>6</sub>]·(ClO<sub>4</sub>)<sub>2</sub>} (<b>2</b>), {[Ag­(<i>o</i>-abn)<sub>2</sub>]·NO<sub>3</sub>}<sub><i>n</i></sub> (<b>3</b>), [Ag­(<i>o</i>-abn)<sub>2</sub>(NO<sub>2</sub>)]<sub><i>n</i></sub> (<b>4</b>), and {[Ag­(<i>o</i>-abn)<sub>2</sub>]·PF<sub>6</sub>}<sub><i>n</i></sub> (<b>5</b>) (<i>m</i>-abn = 3-aminobenzonitrile, and <i>o</i>-abn = 2-aminobenzonitrile) were synthesized and structurally characterized by element analysis, IR, powder X-ray diffraction, and X-ray single-crystal diffraction. Structural analysis reveals that aminobenzonitrile acts as bidentate μ<sub>2</sub>-N,N′ or monodentate μ<sub>1</sub>-N ligands in <b>1</b>–<b>5</b>. Complex <b>1</b> is a 1D chain comprised of <i>C</i><sub>2</sub>-symmetric [Ag­(<i>m</i>-abn)]<sub>2</sub> 14-membered rings. The uncoordinated NO<sub>3</sub><sup>–</sup> anions interact with the 1D chain to form a resulting 2D supramolecular sheet through N–O···N hydrogen bond. Complex <b>2</b> is a discrete binuclear Ag­(I) CC incorporating concurrent bidentate μ<sub>2</sub>-N,N′ and monodentate μ<sub>1</sub>-N <i>m</i>-abn ligands. The variation of anions from NO<sub>3</sub><sup>–</sup> to ClO<sub>4</sub><sup>–</sup> results in the dimensionalities of <b>1</b> and <b>2</b> decreasing from 1D to 0D. When using <i>o</i>-abn, complexes <b>3</b>–<b>5</b> are obtained as 1D chain with <i>C</i><sub>2</sub>-symmetric [Ag­(<i>o</i>-abn)]<sub>2</sub> 12-membered rings, 2D sheet with coordinated μ<sub>2</sub>-η<sup>1</sup>:η<sup>2</sup> NO<sub>2</sub><sup>–</sup> anions, and 1D chain with centrosymmetric [Ag­(<i>o</i>-abn)]<sub>2</sub> 12-membered rings, respectively. Supramolecular interactions such as hydrogen bonding and π···π stacking are also proven effective in shaping the dimensionalities of the solid state structures of <b>1</b>–<b>5</b>. Our results demonstrate that the anions are driving forces for the selection of different structures. Moreover, results about emissive behaviors and thermal stabilities of them are discussed

    A Dihalide–Decahydrate Cluster of [X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> in a Supramolecular Architecture of {[Na<sub>2</sub>(H<sub>2</sub>O)<sub>6</sub>(H<sub>2</sub>O@TMEQ[6])]·2(C<sub>6</sub>H<sub>5</sub>NO<sub>3</sub>)}X<sub>2</sub>(H<sub>2</sub>O)<sub>10</sub> (TMEQ[6] = α,α′,δ,δ′-Tetramethylcucurbit[6]uril; X = Cl, Br)

    No full text
    A discrete dihalide–decahydrate cluster of [X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>]<sup>2–</sup> has been observed in a solid-state structure of {[Na<sub>2</sub>­(H<sub>2</sub>O)<sub>6</sub>­(H<sub>2</sub>O­@­TMEQ­[6])]·2­(C<sub>6</sub>H<sub>5</sub>­NO<sub>3</sub>)}­X<sub>2</sub>­(H<sub>2</sub>O)<sub>10</sub>} (TMEQ[6] = α,α′,δ,δ′-tetra­methyl­cucurbit[6]­uril; X = Cl (<b>1</b>), Br (<b>2</b>)). Its structure can be viewed as a connection of two [X­(H<sub>2</sub>O)<sub>3</sub>]<sup>−</sup> clusters with a uudd water tetramer through hydrogen-bonding interactions
    corecore