9,163 research outputs found

    Partitioning Clustering Based on Support Vector Ranking

    Get PDF
    Postprin

    Link Clustering with Extended Link Similarity and EQ Evaluation Division.

    Get PDF
    Link Clustering (LC) is a relatively new method for detecting overlapping communities in networks. The basic principle of LC is to derive a transform matrix whose elements are composed of the link similarity of neighbor links based on the Jaccard distance calculation; then it applies hierarchical clustering to the transform matrix and uses a measure of partition density on the resulting dendrogram to determine the cut level for best community detection. However, the original link clustering method does not consider the link similarity of non-neighbor links, and the partition density tends to divide the communities into many small communities. In this paper, an Extended Link Clustering method (ELC) for overlapping community detection is proposed. The improved method employs a new link similarity, Extended Link Similarity (ELS), to produce a denser transform matrix, and uses the maximum value of EQ (an extended measure of quality of modularity) as a means to optimally cut the dendrogram for better partitioning of the original network space. Since ELS uses more link information, the resulting transform matrix provides a superior basis for clustering and analysis. Further, using the EQ value to find the best level for the hierarchical clustering dendrogram division, we obtain communities that are more sensible and reasonable than the ones obtained by the partition density evaluation. Experimentation on five real-world networks and artificially-generated networks shows that the ELC method achieves higher EQ and In-group Proportion (IGP) values. Additionally, communities are more realistic than those generated by either of the original LC method or the classical CPM method

    e-Distance Weighted Support Vector Regression

    Full text link
    We propose a novel support vector regression approach called e-Distance Weighted Support Vector Regression (e-DWSVR).e-DWSVR specifically addresses two challenging issues in support vector regression: first, the process of noisy data; second, how to deal with the situation when the distribution of boundary data is different from that of the overall data. The proposed e-DWSVR optimizes the minimum margin and the mean of functional margin simultaneously to tackle these two issues. In addition, we use both dual coordinate descent (CD) and averaged stochastic gradient descent (ASGD) strategies to make e-DWSVR scalable to large scale problems. We report promising results obtained by e-DWSVR in comparison with existing methods on several benchmark datasets

    A two-way translation system of Chinese sign language based on computer vision

    Full text link
    As the main means of communication for deaf people, sign language has a special grammatical order, so it is meaningful and valuable to develop a real-time translation system for sign language. In the research process, we added a TSM module to the lightweight neural network model for the large Chinese continuous sign language dataset . It effectively improves the network performance with high accuracy and fast recognition speed. At the same time, we improve the Bert-Base-Chinese model to divide Chinese sentences into words and mapping the natural word order to the statute sign language order, and finally use the corresponding word videos in the isolated sign language dataset to generate the sentence video, so as to achieve the function of text-to-sign language translation. In the last of our research we built a system with sign language recognition and translation functions, and conducted performance tests on the complete dataset. The sign language video recognition accuracy reached about 99.3% with a time of about 0.05 seconds, and the sign language generation video time was about 1.3 seconds. The sign language system has good performance performance and is feasible
    corecore