6,662 research outputs found

    The Impact of Physician Intervention and Tobacco Control Policies on Average Daily Cigarette Consumption Among Adult Smokers

    Get PDF
    Physicians' advice to stop smoking has been found to increase smoking cessation rates in controlled clinical trials. However, these finding may not be applicable under real world conditions. This paper investigates the impact of physicians' advice and tobacco control policies on conditional cigarette demand among adults employing non-experimental data. Because the data is non-experimental, the variable reflect physician advice to stop smoking and cigarette consumption are likely to be endogenous. We implement a three stage least squares regression technique designed to take account the joint determination of physician advice and cigarette smoking. The results from these models imply that smokers that received advice from their physician to quit smoking will decrease their average daily consumption by between 5-6 cigarettes per day as compared to smoker who do not receive advice. This result implies that physicians' advice is effective in curtailing smoking in real world settings. Other policies that were found to decrease average smoking by smokers include: the real price of cigarettes and clean indoor air laws.

    A classification of 3+1D bosonic topological orders (I): the case when point-like excitations are all bosons

    Get PDF
    Topological orders are new phases of matter beyond Landau symmetry breaking. They correspond to patterns of long-range entanglement. In recent years, it was shown that in 1+1D bosonic systems there is no nontrivial topological order, while in 2+1D bosonic systems the topological orders are classified by a pair: a modular tensor category and a chiral central charge. In this paper, we propose a partial classification of topological orders for 3+1D bosonic systems: If all the point-like excitations are bosons, then such topological orders are classified by unitary pointed fusion 2-categories, which are one-to-one labeled by a finite group GG and its group 4-cocycle ω4H4[G;U(1)]\omega_4 \in \mathcal H^4[G;U(1)] up to group automorphisms. Furthermore, all such 3+1D topological orders can be realized by Dijkgraaf-Witten gauge theories.Comment: An important new result "Untwisted sector of dimension reduction is the Drinfeld center of E" is added in Sec. IIIC; other minor refinements and improvements; 23 pages, 10 figure

    Compressing Deep Convolutional Neural Networks by Stacking Low-dimensional Binary Convolution Filters

    Full text link
    Deep Convolutional Neural Networks (CNN) have been successfully applied to many real-life problems. However, the huge memory cost of deep CNN models poses a great challenge of deploying them on memory-constrained devices (e.g., mobile phones). One popular way to reduce the memory cost of deep CNN model is to train binary CNN where the weights in convolution filters are either 1 or -1 and therefore each weight can be efficiently stored using a single bit. However, the compression ratio of existing binary CNN models is upper bounded by around 32. To address this limitation, we propose a novel method to compress deep CNN model by stacking low-dimensional binary convolution filters. Our proposed method approximates a standard convolution filter by selecting and stacking filters from a set of low-dimensional binary convolution filters. This set of low-dimensional binary convolution filters is shared across all filters for a given convolution layer. Therefore, our method will achieve much larger compression ratio than binary CNN models. In order to train our proposed model, we have theoretically shown that our proposed model is equivalent to select and stack intermediate feature maps generated by low-dimensional binary filters. Therefore, our proposed model can be efficiently trained using the split-transform-merge strategy. We also provide detailed analysis of the memory and computation cost of our model in model inference. We compared the proposed method with other five popular model compression techniques on two benchmark datasets. Our experimental results have demonstrated that our proposed method achieves much higher compression ratio than existing methods while maintains comparable accuracy

    A theory of 2+1D fermionic topological orders and fermionic/bosonic topological orders with symmetries

    Get PDF
    We propose that, up to invertible topological orders, 2+1D fermionic topological orders without symmetry and 2+1D fermionic/bosonic topological orders with symmetry GG are classified by non-degenerate unitary braided fusion categories (UBFC) over a symmetric fusion category (SFC); the SFC describes a fermionic product state without symmetry or a fermionic/bosonic product state with symmetry GG, and the UBFC has a modular extension. We developed a simplified theory of non-degenerate UBFC over a SFC based on the fusion coefficients NkijN^{ij}_k and spins sis_i. This allows us to obtain a list that contains all 2+1D fermionic topological orders (without symmetry). We find explicit realizations for all the fermionic topological orders in the table. For example, we find that, up to invertible p+ipp+\hspace{1pt}\mathrm{i}\hspace{1pt} p fermionic topological orders, there are only four fermionic topological orders with one non-trivial topological excitation: (1) the K=(1002)K={\scriptsize \begin{pmatrix} -1&0\\0&2\end{pmatrix}} fractional quantum Hall state, (2) a Fibonacci bosonic topological order 214/5B2^B_{14/5} stacking with a fermionic product state, (3) the time-reversal conjugate of the previous one, (4) a primitive fermionic topological order that has a chiral central charge c=14c=\frac14, whose only topological excitation has a non-abelian statistics with a spin s=14s=\frac14 and a quantum dimension d=1+2d=1+\sqrt{2}. We also proposed a categorical way to classify 2+1D invertible fermionic topological orders using modular extensions.Comment: 23 pages, 8 table

    Do Adolescents with Emotional or Behavioral Problems Respond to Cigarette Prices?

    Get PDF
    Adolescents with mental health problems have much higher rates of smoking than those without such problems. Although a large body of evidence suggests that higher cigarette prices reduce smoking prevalence and the quantity smoked, little is known about the interaction between mental health or behavioral problems and tobacco consumption in the general population or among adolescents. Using a national representative sample of adolescents from the National Longitudinal Study of Adolescent Health and employing validated psychiatric measures of emotional distress and behavioral problems, we estimate the price elasticity of cigarette demand for adolescents who have behavioral or emotional problems. The results indicate that these adolescents are at least as responsive to cigarette prices as adolescents with no emotional or behavioral problems.

    Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates

    Full text link
    We propose generalized additive partial linear models for complex data which allow one to capture nonlinear patterns of some covariates, in the presence of linear components. The proposed method improves estimation efficiency and increases statistical power for correlated data through incorporating the correlation information. A unique feature of the proposed method is its capability of handling model selection in cases where it is difficult to specify the likelihood function. We derive the quadratic inference function-based estimators for the linear coefficients and the nonparametric functions when the dimension of covariates diverges, and establish asymptotic normality for the linear coefficient estimators and the rates of convergence for the nonparametric functions estimators for both finite and high-dimensional cases. The proposed method and theoretical development are quite challenging since the numbers of linear covariates and nonlinear components both increase as the sample size increases. We also propose a doubly penalized procedure for variable selection which can simultaneously identify nonzero linear and nonparametric components, and which has an asymptotic oracle property. Extensive Monte Carlo studies have been conducted and show that the proposed procedure works effectively even with moderate sample sizes. A pharmacokinetics study on renal cancer data is illustrated using the proposed method.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1194 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore