12 research outputs found
Application of the United States Soybean Export Council program's soy-optimized floating feeds and low volume, high density cage aquaculture technologies
The United States Soybean Export Council s (USSEC) Soy-In-Aquaculture (SIA) project in the Philippines introduced the Low Volume High Density (LVHD) cage culture production methodology in 2003. The aim of this technology is to maximize farmers profit, improve productivity, reduce feed conversion ratios (FCR) and limit environmental degradation. The Philippine fish farmers were very conservative and hesitant about adopting the USSEC SIA Low Volume High Density (LVHD) cage culture technology, particularly the new feeding techniques using extruded floating feeds. This conservative attitude was highlighted with different projects using Nile tilapia (Oreochromis niloticus), milkfish (Chanos chanos) and snubnose pompano (Trachinotus blochii) in USSEC SIA LVHD cage feeding demonstrations conducted in different commercial farms in the Philippines
An Investigation of Factors Affecting Elementary School Students’ BMI Values Based on the System Dynamics Modeling
This study used system dynamics method to investigate the factors affecting elementary school students’ BMI values.
The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling.
According to the system dynamics modeling, this study consisted of research on the four dimensions: student’s personal life style,
diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students’ peer interaction.
The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently
have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students’
amounts of physical activity, and nutrition education has a prominent influence on changing students’ high-calorie diets
The Cymbidium genome reveals the evolution of unique morphological traits
The marvelously diverse Orchidaceae constitutes the largest family of angiosperms. The genus Cymbidium in
Orchidaceae is well known for its unique vegetation, floral morphology, and flower scent traits. Here, a chromosomescale
assembly of the genome of Cymbidium ensifolium (Jianlan) is presented. Comparative genomic analysis showed
that C. ensifolium has experienced two whole-genome duplication (WGD) events, the most recent of which was shared
by all orchids, while the older event was the Ď„ event shared by most monocots. The results of MADS-box genes
analysis provided support for establishing a unique gene model of orchid flower development regulation, and flower
shape mutations in C. ensifolium were shown to be associated with the abnormal expression of MADS-box genes. The
most abundant floral scent components identified included methyl jasmonate, acacia alcohol and linalool, and the
genes involved in the floral scent component network of C. ensifolium were determined. Furthermore, the decreased
expression of photosynthesis-antennae and photosynthesis metabolic pathway genes in leaves was shown to result in
colorful striped leaves, while the increased expression of MADS-box genes in leaves led to perianth-like leaves. Our
results provide fundamental insights into orchid evolution and diversification.The National Key Research and Development Program of China, the National Natural Science Foundation of China, the Outstanding Young Scientific Research Talent Project of Fujian Agriculture and Forestry University, the Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization Construction Funds, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program.https://www.nature.com/hortresam2022BiochemistryGeneticsMicrobiology and Plant Patholog
An Investigation of Factors Affecting Elementary School Students' BMI Values Based on the System Dynamics Modeling
This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets
Efficacy and Renal Safety of Prophylactic Tenofovir Alafenamide for HBV-Infected Cancer Patients Undergoing Chemotherapy
There are no data comparing the efficacy and safety of prophylactic entecavir (ETV), tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF) for HBV-infected cancer patients undergoing chemotherapy. This study aimed to compare the efficacy and renal safety of ETV, TDF and TAF in this setting. HBsAg-positive cancer patients treated with ETV (n = 582), TDF (n = 200) and TAF (n = 188) during chemotherapy were retrospectively enrolled. Antiviral efficacy and risk of renal events were evaluated. The rate of complete viral suppression at 1 year was 94.7%, 94.7% and 96.1% in ETV, TDF and TAF groups, respectively (p = 0.877). A significant proportion of patients developed renal dysfunction during chemotherapy. The incidences of acute kidney injury (AKI) and chronic kidney disease stage migration were comparable among the ETV, TDF and TAF groups. TAF was relatively safe in patients with predisposing factors of AKI, including hypoalbuminemia and cisplatin use. In patients who were switched from TDF to TAF during chemotherapy, the renal function remained stable and viral suppression was well maintained after switching. In conclusion, TAF had good renal safety and comparable efficacy with ETV and TDF for HBV-infected cancer patients receiving chemotherapy. Switching from TDF to TAF during chemotherapy is safe, without a loss of efficacy
The Cymbidium genome reveals the evolution of unique morphological traits
The marvelously diverse Orchidaceae constitutes the largest family of angiosperms. The genus Cymbidium in Orchidaceae is well known for its unique vegetation, floral morphology, and flower scent traits. Here, a chromosome-scale assembly of the genome of Cymbidium ensifolium (Jianlan) is presented. Comparative genomic analysis showed that C. ensifolium has experienced two whole-genome duplication (WGD) events, the most recent of which was shared by all orchids, while the older event was the tau event shared by most monocots. The results of MADS-box genes analysis provided support for establishing a unique gene model of orchid flower development regulation, and flower shape mutations in C. ensifolium were shown to be associated with the abnormal expression of MADS-box genes. The most abundant floral scent components identified included methyl jasmonate, acacia alcohol and linalool, and the genes involved in the floral scent component network of C. ensifolium were determined. Furthermore, the decreased expression of photosynthesis-antennae and photosynthesis metabolic pathway genes in leaves was shown to result in colorful striped leaves, while the increased expression of MADS-box genes in leaves led to perianth-like leaves. Our results provide fundamental insights into orchid evolution and diversification
Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy
Analyses of the genome sequences and expression data for two closely related mycoheterotrophic orchid species provide insights into the genomic basis underlying the evolution of mycoheterotrophy.
To improve our understanding of the origin and evolution of mycoheterotrophic plants, we here present the chromosome-scale genome assemblies of two sibling orchid species: partially mycoheterotrophic Platanthera zijinensis and holomycoheterotrophic Platanthera guangdongensis. Comparative analysis shows that mycoheterotrophy is associated with increased substitution rates and gene loss, and the deletion of most photoreceptor genes and auxin transporter genes might be linked to the unique phenotypes of fully mycoheterotrophic orchids. Conversely, trehalase genes that catalyse the conversion of trehalose into glucose have expanded in most sequenced orchids, in line with the fact that the germination of orchid non-endosperm seeds needs carbohydrates from fungi during the protocorm stage. We further show that the mature plant of P. guangdongensis, different from photosynthetic orchids, keeps expressing trehalase genes to hijack trehalose from fungi. Therefore, we propose that mycoheterotrophy in mature orchids is a continuation of the protocorm stage by sustaining the expression of trehalase genes. Our results shed light on the molecular mechanism underlying initial, partial and full mycoheterotrophy