331 research outputs found
Fader Networks: Manipulating Images by Sliding Attributes
This paper introduces a new encoder-decoder architecture that is trained to
reconstruct images by disentangling the salient information of the image and
the values of attributes directly in the latent space. As a result, after
training, our model can generate different realistic versions of an input image
by varying the attribute values. By using continuous attribute values, we can
choose how much a specific attribute is perceivable in the generated image.
This property could allow for applications where users can modify an image
using sliding knobs, like faders on a mixing console, to change the facial
expression of a portrait, or to update the color of some objects. Compared to
the state-of-the-art which mostly relies on training adversarial networks in
pixel space by altering attribute values at train time, our approach results in
much simpler training schemes and nicely scales to multiple attributes. We
present evidence that our model can significantly change the perceived value of
the attributes while preserving the naturalness of images.Comment: NIPS 201
Towards Knowledge-Based Personalized Product Description Generation in E-commerce
Quality product descriptions are critical for providing competitive customer
experience in an e-commerce platform. An accurate and attractive description
not only helps customers make an informed decision but also improves the
likelihood of purchase. However, crafting a successful product description is
tedious and highly time-consuming. Due to its importance, automating the
product description generation has attracted considerable interests from both
research and industrial communities. Existing methods mainly use templates or
statistical methods, and their performance could be rather limited. In this
paper, we explore a new way to generate the personalized product description by
combining the power of neural networks and knowledge base. Specifically, we
propose a KnOwledge Based pErsonalized (or KOBE) product description generation
model in the context of e-commerce. In KOBE, we extend the encoder-decoder
framework, the Transformer, to a sequence modeling formulation using
self-attention. In order to make the description both informative and
personalized, KOBE considers a variety of important factors during text
generation, including product aspects, user categories, and knowledge base,
etc. Experiments on real-world datasets demonstrate that the proposed method
out-performs the baseline on various metrics. KOBE can achieve an improvement
of 9.7% over state-of-the-arts in terms of BLEU. We also present several case
studies as the anecdotal evidence to further prove the effectiveness of the
proposed approach. The framework has been deployed in Taobao, the largest
online e-commerce platform in China.Comment: KDD 2019 Camera-ready. Website:
https://sites.google.com/view/kobe201
Factorized Q-Learning for Large-Scale Multi-Agent Systems
Deep Q-learning has achieved significant success in single-agent decision
making tasks. However, it is challenging to extend Q-learning to large-scale
multi-agent scenarios, due to the explosion of action space resulting from the
complex dynamics between the environment and the agents. In this paper, we
propose to make the computation of multi-agent Q-learning tractable by treating
the Q-function (w.r.t. state and joint-action) as a high-order high-dimensional
tensor and then approximate it with factorized pairwise interactions.
Furthermore, we utilize a composite deep neural network architecture for
computing the factorized Q-function, share the model parameters among all the
agents within the same group, and estimate the agents' optimal joint actions
through a coordinate descent type algorithm. All these simplifications greatly
reduce the model complexity and accelerate the learning process. Extensive
experiments on two different multi-agent problems demonstrate the performance
gain of our proposed approach in comparison with strong baselines, particularly
when there are a large number of agents.Comment: 7 pages, 5 figures, DAI 201
Aplicación de tecnologías avanzadas del hormigón en las pasarelas en cáscara sobre el río Manzanares para el proyecto Madrid Río
ACCIONA Infraestructuras ha construido para el Proyecto Madrid Río dos pasarelas tipo cáscara. Dichas pasarelas se caracterizan por tener una cubierta con doble curvatura de dimensiones 49,08 m de longitud, y una luz entre apoyos de 43,46 m. En esta obra la Dirección de I+D+i de ACCIONA ha aplicado con notable éxito dos tecnologías de Materiales Avanzados: la aplicación de hormigón autocompactante en condiciones extremas de temperatura y el deseconfrado rápido de estructuras mediante equipos de control de madurez, ambas tecnologías desarrolladas en el Centro de I+D+i de ACCIONA en Madrid
- …
