34 research outputs found

    Sleep During Menopausal Transition: A 10-year Follow-Up

    Get PDF
    Study ObjectivesA 10-year observational follow-up study to evaluate the changes in sleep architecture during the menopausal transition.MethodsFifty-seven premenopausal women (mean age 46 years, SD 0.9) were studied at baseline and after a 10-year follow-up. At both time points, polysomnography (PSG) was performed, and the serum follicle-stimulating hormone (S-FSH) concentration was measured. Linear regression models were used to study the effects of aging and menopause (assessed as change in S-FSH) on sleep.ResultsAfter controlling for body mass index, vasomotor, and depressive symptoms, higher S-FSH level was associated with longer sleep latency (B 0.45, 95% confidence interval [CI]: 0.07 to 0.83). Aging of 10 years was associated with shorter sleep latency (B −46.8, 95% CI: −77.2 to −16.4), shorter latency to stage 2 sleep (B −50.6, 95% CI: −85.3 to −15.9), decreased stage 2 sleep (B −12.4, 95% CI: −21.4 to −3.4), and increased slow-wave sleep (B 12.8, 95% CI: 2.32 to 23.3) after controlling for confounding factors.ConclusionsThis study suggests that PSG measured sleep of middle-aged women does not worsen over a 10-year time span due to the menopausal transition. The observed changes seem to be rather age- than menopause-dependent

    A multi-centre, open label, randomised, parallel-group, superiority Trial to compare the efficacy of URsodeoxycholic acid with RIFampicin in the management of women with severe early onset Intrahepatic Cholestasis of pregnancy: the TURRIFIC randomised trial

    Get PDF
    Published online: 12 January 2021BACKGROUND: Severe early onset (less than 34 weeks gestation) intrahepatic cholestasis of pregnancy (ICP) affects 0.1% of pregnant women in Australia and is associated with a 3-fold increased risk of stillbirth, fetal hypoxia and compromise, spontaneous preterm birth, as well as increased frequencies of pre-eclampsia and gestational diabetes. ICP is often familial and overlaps with other cholestatic disorders. Treatment options for ICP are not well established, although there are limited data to support the use of ursodeoxycholic acid (UDCA) to relieve pruritus, the main symptom. Rifampicin, a widely used antibiotic including in pregnant women, is effective in reducing pruritus in non-pregnancy cholestasis and has been used as a supplement to UDCA in severe ICP. Many women with ICP are electively delivered preterm, although there are no randomised data to support this approach. METHODS: We have initiated an international multicentre randomised clinical trial to compare the clinical efficacy of rifampicin tablets (300 mg bd) with that of UDCA tablets (up to 2000 mg daily) in reducing pruritus in women with ICP, using visual pruritus scores as a measuring tool. DISCUSSION: Our study will be the first to examine the outcomes of treatment specifically in the severe early onset form of ICP, comparing "standard" UDCA therapy with rifampicin, and so be able to provide for the first-time high-quality evidence for use of rifampicin in severe ICP. It will also allow an assessment of feasibility of a future trial to test whether elective early delivery in severe ICP is beneficial.William M. Hague ... Suzette Coat ... Jodie Dodd, Maria Fuller ... Teck Yee Khong ... Jennie Louise ... Philippa Middleton, Ben W. Mol ... Michael Stark ... et al

    A Host Small GTP-binding Protein ARL8 Plays Crucial Roles in Tobamovirus RNA Replication

    Get PDF
    Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5′-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions

    Semliki Forest virus mRNA capping enzyme requires association with anionic membrane phospholipids for activity.

    No full text
    The replication complexes of all positive strand RNA viruses of eukaryotes are associated with membranes. In the case of Semliki Forest virus (SFV), the main determinant of membrane attachment seems to be the virus-encoded non-structural protein NSP1, the capping enzyme of the viral mRNAs, which has guanine-7-methyltransferase and guanylyltransferase activities. We show here that both enzymatic activities of SFV NSP1 are inactivated by detergents and reactivated by anionic phospholipids, especially phosphatidylserine. The region of NSP1 responsible for binding to membranes as well as to liposomes was mapped to a short segment, which is conserved in the large alphavirus-like superfamily of viruses. A synthetic peptide of 20 amino acids from the putative binding site competed with in vitro synthesized NSP1 for binding to liposomes containing phosphatidylserine. These findings suggest a molecular mechanism by which RNA virus replicases attach to intracellular membranes and why they depend on the membranous environment

    Identification of Sequences in Brome Mosaic Virus Replicase Protein 1a That Mediate Association with Endoplasmic Reticulum Membranes

    No full text
    RNA replication of all positive-strand RNA viruses is closely associated with intracellular membranes. Brome mosaic virus (BMV) RNA replication occurs on the perinuclear region of the endoplasmic reticulum (ER), both in its natural plant host and in the yeast Saccharomyces cerevisiae. The only viral component in the BMV RNA replication complex that localizes independently to the ER is 1a, a multifunctional protein with an N-terminal RNA capping domain and a C-terminal helicase-like domain. The other viral replication components, the RNA polymerase-like protein 2a and the RNA template, depend on 1a for recruitment to the ER. We show here that, in membrane extracts, 1a is fully susceptible to proteolytic digestion in the absence of detergent and thus, a finding consistent with its roles in RNA replication, is wholly or predominantly on the cytoplasmic face of the ER with no detectable lumenal protrusions. Nevertheless, 1a association with membranes is resistant to high-salt and high-pH treatments that release most peripheral membrane proteins. Membrane flotation gradient analysis of 1a deletion variants and 1a segments fused to green fluorescent protein (GFP) showed that sequences in the N-terminal RNA capping module of 1a mediate membrane association. In particular, a region C-terminal to the core methyltransferase homology was sufficient for high-affinity ER membrane association. Confocal immunofluorescence microscopy showed that even though these determinants mediate ER localization, they fail to localize GFP to the narrow region of the perinuclear ER, where full-length 1a normally resides. Instead, they mediate a more globular or convoluted distribution of ER markers. Thus, additional sequences in 1a that are distinct from the primary membrane association determinants contribute to 1a's normal subcellular distribution, possibly through effects on 1a conformation, orientation, or multimerization on the membrane
    corecore