38 research outputs found

    Slowing of axonal regeneration is correlated with increased axonal viscosity during aging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood.</p> <p>Results</p> <p>To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour). To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness) and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons.</p> <p>Conclusions</p> <p>Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.</p

    High-energy and ultra-high-energy neutrinos: A Snowmass white paper

    No full text
    Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultra-high-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years

    High-Energy and Ultra-High-Energy Neutrinos

    No full text
    Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultra-high-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years

    High-energy and ultra-high-energy neutrinos:A Snowmass white paper

    No full text
    Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultra-high-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years
    corecore