614 research outputs found

    Luminosity indicators in dusty photoionized environments

    Get PDF
    The luminosity of the central source in ionizing radiation is an essential parameter in a photoionized environment, and one of the most fundamental physical quantities one can measure. We outline a method of determining luminosity for any emission-line region using only infrared data. In dusty environments, grains compete with hydrogen in absorbing continuum radiation. Grains produce infrared emission, and hydrogen produces recombination lines. We have computed a very large variety of photoionization models, using ranges of abundances, grain mixtures, ionizing continua, densities, and ionization parameters. The conditions were appropriate for such diverse objects as H II regions, planetary nebulae, starburst galaxies, and the narrow and broad line regions of active nuclei. The ratio of the total thermal grain emission relative to HÎČ\beta (IR/HÎČ\beta) is the primary indicator of whether the cloud behaves as a classical Str\"{o}mgren sphere (a hydrogen-bounded nebula) or whether grains absorb most of the incident continuum (a dust-bounded nebula). We find two global limits: when IR/HÎČ<100IR/H\beta<100 infrared recombination lines determine the source luminosity in ionizing photons; when IR/HÎČ≫100IR/H\beta\gg100 the grains act as a bolometer to measure the luminosity.Comment: 12 pages 3 figures. Accepted ASP Sept.9

    The effects of the complete replacement of barley and soybean meal with hard wheat by-products on diet digestibility, growth and slaughter traits of a local Algerian rabbit population

    Full text link
    [EN] Eighty one rabbits were used to study the utilisation of hard wheat by-products on the growth of rabbits from a local Algerian population. At weaning (28 d, 501±99 g), the animals were individually caged and received ad libitum one of the three experimental diets for 49 d. The control diet included 26% wheat bran (W26: control diet), alfalfa, bar- ley and soybean meal. The two other diets were formulated by substituting barley and soybean meal with hard wheat by-products, and contained 60% (W60) or 67% (W67) of these by-products (50 or 57% bran and 10% middling). On average, diets contained 11.8% crude fibre and crude protein decreased from 18.3 (W26) to 16.1% (W67). Growth traits and slaughter performances were recorded. Another group of thirty animals was used to determine dietary nutrient di- gestibility from 42 to 46 d of age. Dry matter digestibility and digestible energy content were lower in the W60 and W67 diets than in the control diet (W26) (71.3 and 71.5% vs. 74.9%, and 11.9 and 11.9 vs. 12.5 MJ/kg, respectively; P<0.01). In contrast, crude fibre digestibility was lower in W26 (21.9%) than in the other two diets (29.6 and 32.2% for W60 and W67, respectively; P<0.01). The growth rates were similar for all three groups (28.0, 27.1 and 26.0 g/d for W26, W60 and W67) as were the feed conversion ratios (3.14, 3.17 and 3.10, respectively). Dressing out percentage (66.4±2.0% on average for the cold carcass) was not affected by the amount of wheat by-products in the diet. The total mortality rate was high (23%), probably corresponding to the low crude fibre content of the three experimental diets, but was not connected to the amount of wheat by-products.Lakabi-Ioualitene, D.; Lounaouci-Ouyed, G.; Berchiche, M.; Lebas, F.; Fortun-Lamothe, L. (2010). The effects of the complete replacement of barley and soybean meal with hard wheat by-products on diet digestibility, growth and slaughter traits of a local Algerian rabbit population. World Rabbit Science. 16(2). doi:10.4995/wrs.2008.63216

    Effect of housing enrichment and type of flooring on the performance and behaviour of female rabbits

    Full text link
    [EN] This study investigated the effect of housing enrichments (scratching card, gnawing material and a platform), of a change in height and in the type of flooring on the live weight, reproductive performance and behaviour of female rabbits, as well as on the feed intake and spatial distribution of females and their kits. A total of 40 multiparous female rabbits were monitored in three consecutive reproductive cycles (48-d intervals). Four days before parturition in each reproductive cycle, the females were randomly assigned to one of the five types of housing: Control (CNT: 102×47×30 cm, L×W× H); Scratching card (SCT: containing a scratching card); Gnawing materials (GNW: CNT dimensions plus a compressed lucerne hay block and a wooden stick); Platform (PLT: 102×47×60 cm, including a platform with a plastic floor) and Combination (CBN: PLT dimensions with the scratching card, the gnawing materials and a platform). Data were only recorded during the first and third reproductive cycles. The living conditions did not significantly alter the females’ live weight (4889 g at housing; 4890 g at mid-lactation; 4867 g at weaning), reproductive performance (9.0 kits born alive), survival of the kits (90%), nor the feed intake of females and their litters (542 g/day). Providing animals with a gnawing block stimulated Gnawing behaviour (median frequency per group: CTL=0.00, SCT=0.00, GNW=4.69, PLT=0.00, and CBN=2.34; PRearing up behaviour (median frequencies per group: CTL=0.00, SCT=0.00, GNW=0.00, PLT=2.08, and CBN=3.12; P=0.06), and when a platform was present, the rabbits used it (mean values per group: CTL=0.00, SCT=0.00, GNW=0.00, PLT=1.79, and CBN=4.91; P=0.003). Regarding the type of floor, females appeared to prefer the plastic mesh flooring (31.2%) to the wire mesh flooring (18.8%). To sum up, providing female rabbits with simple enrichments appears to stimulate specific behaviours like Gnawing and Rearing up and may contribute to their wellbeing.Huang, Y.; BrĂ©da, J.; Savietto, D.; Debrusse, A.; BonnemĂšre, J.; Gidenne, T.; Combes, S.... (2021). Effect of housing enrichment and type of flooring on the performance and behaviour of female rabbits. World Rabbit Science. 29(4):275-285. https://doi.org/10.4995/wrs.2021.15848OJS275285294Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour, 49: 227-266. https://doi.org/10.1163/156853974X00534Animal Welfare Committee. 2009. Five Freedoms. Available at https://webarchive.nationalarchives.gov.uk/20110909181150/http://www.fawc.org.uk/freedoms.htm. Accessed February 2021.ANSES. 2018. ANSES proposes a definition of animal welfare and sets the foundation for its research and expert appraisal work. Available at https://www.anses.fr/en/content/ansesproposes-definition-animal-welfare-and-sets-foundation-itsresearch-and-expert. Accessed February 2021.Barge P., Masoero G., Chicco R. 2008. Raising rabbit does in platform cages. In Proc.: 9th World Rabbit Congress, 10-13 June, 2008. Verona, Italy. 1:1153-1158.Buijs S., Maertens L., Hermans K., Vangeyte J., Tuyttens F.A.M. 2015. Behaviour, wounds, weight loss and adrenal weight of rabbit does as affected by semigroup housing. Appl. Anim. Behav. Sci. 172: 44-51. https://doi.org/10.1016/j.applanim.2015.09.003Baumans, V. 2005. Environmental enrichment for laboratory rodents and rabbits: requirements of rodents, rabbits, and research. Ilar Journal, 46: 162-170. https://doi.org/10.1093/ilar.46.2.162Coureaud G., Fortun-Lamothe L., Rödel H.G., MonclĂșs R., Schaal B. 2008. The developing rabbit: some data related to the behaviour, feeding and sensory capacities between birth and weaning. INRA-Prod. Anim. 21: 231-238. https://doi.org/10.20870/productions-animales.2008.21.3.3395Coureaud G., Rödel H.G., Le Normand B., Fortun-lamothe L. 2015. Habitat et Comportement. In: Gidenne T. (Eds), Le lapin de la biologie Ă  l'Ă©levage, Editions Quae, Versailles, France, pp. 107-136.Dixon L.M., Hardiman J.R., Cooper J.J. 2010. The effects of spatial restriction on the behavior of rabbits (Oryctolagus cuniculus). Journal of Veterinary Behavior: Clinical Applications and Research, 5: 302-308. https://doi.org/10.1016/j.jveb.2010.07.002EFSA AHAW Panel 2020. Scientific Opinion on the health and welfare of rabbits farmed in different production systems. EFSA Journal, 18: 5944. https://doi.org/10.2903/j.efsa.2020.5944Farkas T.P., Dal Bosco A., Szendro Z., Filiou E., Matics Z., Odermatt M., Radnai I., Paci G., Gerencser Z. 2016. Production of Growing Rabbits in Large Pens with and without Multilevel Platforms. In Proc.: 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 663-666.GerencsĂ©r Z., Farkas T.P., Dal Bosco A., Filiou E., Matics Z., Odermatt M., Paci G., SzendrƑ Z. 2016. The usage of multilevel platforms in growing rabbits housed in large pens as affected by platfor mmaterial (wire-mesh vs plastic-mesh). In Proc. 11th World Rabbit Congress, 15-18 June, 2016. Qingdao, China. 1: 671-674.Hawkins P., Hubrecht R., Buckwell A., Cubitt S., Howard B., Jackson A., Poirier, G. M. 2008. Refining rabbit care. A resource for those working with rabbits in research. RSPCA, West Sussex and UFAW, Hertfordshire.Huang Y., Breda J., Savietto D., Debrusse A., Combes S., Fortun-Lamothe L. 2021. Part-time grouping of rabbit does in enriched housing: effects on performances, injury occurrence and enrichment use. Animal. in press.Jordan D., Gorjanc G., Kermauner A., Ć tuhec I. 2011. The behaviour of individually housed growing rabbits and the influence of gnawing sticks as environmental enrichment on daily rhythm of behavioural patterns duration. Acta Agriculturae Slovenica, 98: 51-61.Jordan D., Gorjanc G., Ć tuhec I. 2008. Wooden sticks as environmental enrichment: effect on fattening and carcass traits of individually housed growing rabbits. World Rabbit Sci., 16: 237-243. https://doi.org/10.4995/wrs.2008.619Lang C., Hoy S. 2011. Investigations on the use of an elevated platform in group cages by growing rabbits. World Rabbit Sci., 19: 95-101. https://doi.org/10.4995/wrs.2011.800Leach M.C., Allweiler S., Richardson C., Roughan J.V., Narbe R., Flecknell P.A. 2009. Behavioural effects of ovariohysterectomy and oral administration of meloxicam in laboratory housed rabbits. Res. Vet. Sci., 87: 336-347. https://doi.org/10.1016/j.rvsc.2009.02.001Luzi F., Ferrante V., Heinzl E. Verga M. 2003. Effect of environmental enrichment on productive performance and welfare aspects in fattening rabbits. Ital. J. Anim. Sci., 2: 438-440.Matics Z., Farkas T. P., Dal Bosco A., SzendrƑ Z., Filiou E., Nagy I., Odermatt M., Paci G., GerencsĂ©r Z. 2018. Comparison of pens without and with multilevel platforms for growing rabbits. Ital. J. Anim. Sci., 17: 469-476. https://doi.org/10.1080/1828051X.2017.1363640MikĂł A., Matics Z., GerencsĂ©r Z., Odermatt M., Radnai I., Nagy I., SzendrƑ K. SzendrƑ, Z. 2014. Performance and welfare of rabbit does in various caging systems. Animal, 8: 1146-1152. https://doi.org/10.1017/S1751731114001244Mirabito L., Buthon L., Cialdi G., Galliot P., Souchet C. 1999. Effet du logement des lapines en cages rĂ©haussĂ©es avec plate-forme: Premiers resultats. In Proc.: 8Ăšmes JournĂ©es de la Recherche Cunicole. 9-10 June, 1999. Paris, France. 1: 67-70.Mirabito L., Galliot P., Souchet C. 2000. Effect of different ways of cage enrichment on the productive traits and mortality of fattening rabbits. In Proc.: 7th World Rabbit Congress 4-7 July, 2000. Valencia, Spain. 1: 4-7.MonclĂșs R., Rödel H. G. 2008. Different forms of vigilance in response to the presence of predators and conspecifics in a group-living mammal, the European Rabbit. Ethology, 114: 287-297. https://doi.org/10.1111/j.1439-0310.2007.01463.xMorton D.B., Jennings M., Batchelor G.R., Bell D., Birke L., Davies K., Eveleigh J.R., Gunn D., Heath M., Howard B., Koder P., Phillips J., Poole T., Sainsbury A.W., Sales G.D., Smith D.J.A., Stauffacher M., Turner R.J. 1993. Refinements in rabbit husbandry: Second report of the BVAAWF/FRAME/RSPCA/UFAW joint working group on refinement. Laboratory Animals, 27: 301-329. https://doi.org/10.1258/002367793780745633Podberscek A.L., Blackshaw J.K., Beattie A.W. 1991. The behaviour of group penned and individually caged laboratory rabbits. Appl. Anim. Behav. Sci., 28: 353-363. https://doi.org/10.1016/0168-1591(91)90167-VPrincz Z., Orova Z., Nagy I., Jordan D., Ć tuhec I., Luzi F., Verga M. SzendrƑ Z. 2007. Application of gnawing sticks in rabbit housing. World Rabbit Sci., 15: 29-36. https://doi.org/10.4995/wrs.2007.607Rommers J.M., Bracke M., Reuvekamp B., Gunnink H., de Jong I.C. 2014. Cage-enrichment: rabbit does prefer straw or a compressed wooden block. World Rabbit Sci., 22: 301-309. https://doi.org/10.4995/wrs.2014.1353Rommers J., de Greef K. H. 2018. Are combi parks just as useful as regular parks for fatteners for part-time group housing of rabbit does? World Rabbit Sci., 26: 299-305. https://doi.org/10.4995/wrs.2018.9587Rosell J.M., De la Fuente L.F. 2009. Effect of footrests on the incidence of ulcerative pododermatitis in domestic rabbit does. Animal Welfare, 18: 199-204.Rosell J.M., De la Fuente L. 2013. Assessing ulcerative pododermatitis of breeding rabbits. Animals, 3: 318-326. https://doi.org/10.3390/ani3020318SzendrƑ Z., Matics Z., Odermatt M., GerencsĂ©r Z., Nagy I., SzendrƑ K., Dalle Zotte A. 2012. Use of different areas of pen by growing rabbits depending on the elevated platforms' floor-type. Animal, 6: 650-655. https://doi.org/10.1017/S1751731111001819SzendrƑ Z., Trocino A., Hoy S., Xiccato G., VillagrĂĄ A., Maertens L. 2019. A review of recent research outcomes on the housing of farmed domestic rabbits: reproducing does. World Rabbit Sci., 27: 1-14. https://doi.org/10.4995/wrs.2019.10599Trocino A., Zomeño C., Filiou E., Birolo M., White P., Xiccato, G. 2019. The Use of Environmental Enrichments Affects Performance and Behavior of Growing Rabbits Housed in Collective Pens. Animals, 9: 537. https://doi.org/10.3390/ani9080537Verga M., Zingarelli I., Heinzl E., Ferrante V., Martino P.A., Luzi F. 2004. Effect of housing and environmental enrichment on performance and behaviour in fattening rabbits. In Proc.: 8th World Rabbit Congress, 7-10 September, 2004. Pueblo, Mexico. 1:1283-1288.Verga M., Luzi F., Carenzi C. 2007. Effects of husbandry and management systems on physiology and behaviour of farmed and laboratory rabbits. Hormones and Behavior, 52: 122-129. https://doi.org/10.1016/j.yhbeh.2007.03.02

    Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies

    Get PDF
    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians

    A log analysis study of 10 years of ebook consumption in academic library collections

    Get PDF
    Even though libraries have been offering eBooks for more than a decade, very little is known about eBook access and consumption in academic library collections. This paper addresses this gap with a log analysis study of eBook access at the library of the University of Waikato. This in-depth analysis covers a period spanning 10 years of eBook use at this university. We draw conclusions about the use of eBooks at this institution and compare the results with other published studies of eBook usage at tertiary institutes

    T cell receptors for the HIV KK10 epitope from patients with differential immunologic control are functionally indistinguishable

    Get PDF
    HIV controllers (HCs) are individuals who can naturally control HIV infection, partially due to potent HIV-specific CD8+ T cell responses. Here, we examined the hypothesis that superior function of CD8+ T cells from HCs is encoded by their T cell receptors (TCRs). We compared the functional properties of immunodominant HIV-specific TCRs obtained from HLA-B*2705 HCs and chronic progressors (CPs) following expression in primary T cells. T cells transduced with TCRs from HCs and CPs showed equivalent induction of epitope-specific cytotoxicity, cytokine secretion, and antigen-binding properties. Transduced T cells comparably, albeit modestly, also suppressed HIV infection in vitro and in humanized mice. We also performed extensive molecular dynamics simulations that provided a structural basis for similarities in cytotoxicity and epitope cross-reactivity. These results demonstrate that the differential abilities of HIV-specific CD8+ T cells from HCs and CPs are not genetically encoded in the TCRs alone and must depend on additional factors
    • 

    corecore